SYMBOLS

Symbols used in this manual along with their meaning are shown below. Symbols and signs are repeated within the chapters and/or sections and have the following meaning:

Generic Warning:
This symbol indicates the need to read the manual carefully or the necessity of an important maneuver or maintenance operation.

Electricity Warning:
This symbol indicates dangerous voltage associated with the laser product, or powerful enough to constitute an electrical risk. This symbol may also appear on the marking system at the risk area.

Laser Warning:
This symbol indicates the danger of exposure to visible or invisible laser radiation. This symbol may also appear on the marking system at the risk area.

Fire Warning:
This symbol indicates the danger of a fire when processing flammable materials. Because there is a danger of fire, it is indispensable to follow the instructions provided by the manufacturer when commissioning the marking system.

Notice:
Notes, usage tips, or additional information.

Note:
Carefully read the user’s manual before using the marking system.
REVISION INDEX

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Number of added or edited pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>821002870</td>
<td>15/01/2016</td>
<td>Release</td>
</tr>
<tr>
<td>821002871 Rev. A</td>
<td>29-04-2016</td>
<td>Appendix C</td>
</tr>
<tr>
<td>821002872 Rev. B</td>
<td>22-05-2017</td>
<td>ii, Appendix F</td>
</tr>
</tbody>
</table>

NOTE:
We sometimes update the documentation after original publication. Therefore, you should also review the documentation at www.datalogic.com for updates.
FOREWORD

Information included in this manual is intended for a qualified installer able to integrate the marking system into a system, complying with all the protection features required by international rules and local legislations. Refer to the Appendices for further information.

Following manual refers to an VLASE™ 2PWX-TLS2 marking system in Class 4 configuration.

In addition to being professionally trained in their role, personnel assigned to work on the marking system must be informed and made acquainted with the risks inherent to invisible and visible laser radiation. The operator is required to carefully read the section of the manual concerning safety instructions as well as the sections related to matters falling under her/his responsibility.

The workers assigned to the marking system can be identified as:

- **OPERATOR**
 responsible for loading elements to be processed, visually checking the work cycle, removing the finished product and cleaning the marking system.

- **MAINTENANCE WORKER**
 responsible for the electrical, mechanical and optical maintenance and adjustment of the marking system.

WARNING!
DataLogic shall not be held responsible for any non conforming use of the marking system of its manufacture.

NOTE:
BEFORE INSTALLING AND USING THE LASER, READ CAREFULLY THE APPENDICES.
OVERVIEW

We are honoured by your choice of a Datalogic product, specifically a new product belonging to the Vlase™ product families, which aim to satisfy new market evolutions, and especially the integration industrial laser sources.

OPERATION OF A LASER SYSTEM WITH GALVANOMETRIC SCANNING

The laser generates a train of high-energy pulses of invisible radiation.
In order to obtain a more accurate focus, the laser beam is first enlarged using an optical expansion system and then deflected by a scanning system consisting of two mirrors mounted on galvanometric motors. These mirrors deflect the beam in a controlled beam along the X and Y axes; processing of the product surface occurs by coordinating the movement of the two motors with the turning on/off of the laser beam.
The deflected laser beam is focused by an F-Theta objective before it hits the surface of the product.
 Generally speaking, the marking is carried out within the focus of the beam.

MARKING SOFTWARE

The marking software Lighter is preinstalled on the system.

NOTE:
Consult Lighter software user’s manual for a proper use of the same.

NOTE:
Consult the proper Appendix to upgrade the preinstalled software if necessary.

The Vlase™ laser marking system features a control unit whose size is compatible with the standard 19” 2,5U in varnished steel, and a resonator whose compact dimensions make it easy to integrate into a system that comprises safety devices required by applicable regulations, the management of marking signals and the customer’s complementary modules, if any.

All laser marking system connections are found on the rear of the rack: power supply, safety, electrical signals, communication ports, patch cord to the scanner head, while the front features key and enable command devices, status LED in addition to a USB connector for the communication with the internal embedded controller.

Vlase™ belongs to the family of DPSS (Diode Pump Solid State) laser sources in the “end pumped” and “Q-Switched” configuration.
The mechanical and electrical characteristics satisfy standardization and connectivity needs of the industrial field, such as the new 19” rack and different solutions for laser system control.
The new marking system control platform allows for an easy integration in industrial environments and complies with the standard of the other Datalogic marking systems, with the same philosophy implemented in Arex™.

Based on the optical layout of the Datalogic Violino™ laser source, the Vlase™ family guarantees significant improvements in terms of performances thanks to the new laser diode current and temperature controllers, developed by the Datalogic laboratories, which short warm-up time and improve the stability of emitted laser power. The operating temperature range has been extended to 5°- 40°C for its use in industrial environments.

WARNING!
Marking system installation in secure environment is responsibility of the system integrator!
Main features:

- 100 to 240 V AC 50-60 Hz Power Supply
- Operating Temperature Range extended to 40°C
- Fully integrated marking and system control
- Integrated PC embedded and marking software for stand alone operation
- Ease of integration in industrial environments and maximum control compatibility with other marking platforms (Arex™/Eox™)
- Integrated photocell and encoder connectors for Marking ON Fly (MOF) applications
- Unattended control of the system by LAN network or serial communication (RS232 protocol)
- Stable Marking process and very high a beam quality ($M^2<1.5$)
- Compact Design: 19” 2,5U rack
- High peak power (up to 35kW) and short pulse duration (<10ns)
- Beam Expander with various available magnifications
- Improved focus distance repeatability, thanks to new Beam Expander design which guarantees higher beam collimation control
- Cable length 3 meter, other length available on request
- Simplified access to Laser Diode Module for fiber installation and Laser Diode Module maintenance
- Dedicated software tool for laser parameter setting and diagnostics

IMPORTANT WARNINGS

Access to the internal parts of the marking system is allowed only to authorized personnel, duly qualified and trained with regards to risks of optical and electrical nature. Datalogic declines any and all responsibility for work carried out on live parts by untrained or unauthorized personnel.

WARNING!
It is forbidden to change the intended use for which the system was designed and developed. Datalogic declines any and all responsibility for improper use of its marking system.

WARNING!
These marking system actuation is demanded to the system integrator.
TABLE OF CONTENTS

SYMBOLS III
REVOLUTION INDEX IV
FOREWORD V
OVERVIEW VI
OPERATION OF A LASER SYSTEM WITH GALVANOMETRIC SCANNING vi
MARKING SOFTWARE vi
IMPORTANT WARNINGS vii

TABLE OF CONTENTS VIII
1 CONTENTS OF THE PACKAGING 10
1.1 UNPACKING 10
1.2 MAIN HARDWARE 11
1.3 CABLES AND OTHER COMPONENTS 11
1.4 TRANSPORT 12
1.5 ON MOISTURE CONDENSATION 12
1.6 FIXING AND POSITIONING 13
1.7 INSTALLATION ENVIRONMENT 15
1.8 FUME / DUST EXTRACTOR 16
1.9 FAN INSTALLATION 16

2 TECHNICAL SPECIFICATIONS 17
2.1 TECHNICAL CHARACTERISTICS 17
2.2 DESCRIPTION OF THE MODULES 19
2.2.1 RESONATOR 19
2.2.2 CONTROL RACK 20
2.3 MARKING AREA SPECIFICATION 21
2.4 CONNECTORS SPECIFICATIONS 23
2.4.1 INTERLOCK CONNECTOR 23
2.4.2 INTERLOCK OUT 25
2.4.3 COMMAND BOX CONNECTOR (LASER CONTROL) 26
2.4.4 AXES CONNECTOR (I/O CONTROL) 31
2.4.5 RS232 CONNECTOR (COM2) 32
2.4.6 ENCODER CONNECTOR 33
2.4.7 PHOTOCCELL CONNECTOR 33
2.5 INPUT/OUTPUT SIGNAL SPECIFICATIONS 34
2.6 CONNECTION EXAMPLE 35

3 INSTALLATION AND SET UP 36
3.1 CONNECTIONS 36
3.1.1 CONNECTING COMMAND BOX CABLE 36
3.1.2 CONNECTING INTERLOCK CABLE 37
3.1.3 CONNECTING INTERLOCK OUT CONNECTOR 37
3.1.4 CONNECTING THE OPTICAL FIBER TO THE CONTROL RACK 38
3.1.5 CONNECTING THE OPTICAL FIBER ON THE RESONATOR 41
3.1.6 CONNECTING RADIOFREQUENCY CABLE 43
3.1.7 CONNECTING MDR CABLE 44
3.1.8 CONNECTING RESONATOR CABLE 45
3.1.9 CONNECTING FAN CABLE 46
3.1.10 CONNECTING POWER SUPPLY CABLE 47
3.1.11 GROUND CONNECTION 47
3.1.12 LOCAL MODE CONNECTION 48
3.1.13 REMOTE MODE CONNECTION 49
3.1.14 F-THETA LENS PROTECTION CAP REMOVAL 50

4 USE AND OPERATION 51
4.1 TURNING ON SEQUENCE 51
4.1.1 ADVICE ON USING THE SYSTEM 54
1 CONTENTS OF THE PACKAGING

1.1 UNPACKING

When unpacking the marking system from the shipping carton you should:

- Remove the documentation from the top of the marking system
- Remove the box containing the accessories
- Carefully remove the marking system from the packaging using both hands

Before installing or operating the marking system, you should:

- Inspect the shipping container for damage
- Inspect the marking system for signs of damage
- Confirm that the shipping carton contains all items on the shipping inventory list including any accessories

Retain all packaging materials until the marking system has been inspected for completeness and damage, and you have checked the operating performance. If anything is missing or defective, see chapter 7 for contact details.
1.2 MAIN HARDWARE

<table>
<thead>
<tr>
<th>Control rack</th>
<th>Resonator</th>
<th>F-Theta (except 2PWX-T0SV)</th>
</tr>
</thead>
</table>

1.3 CABLES AND OTHER COMPONENTS

<table>
<thead>
<tr>
<th>RF cable</th>
<th>Resonator cable</th>
<th>Optical fiber cable</th>
<th>USB cable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply cable</td>
<td>Scan Head cable</td>
<td>Command Box cable</td>
<td></td>
</tr>
<tr>
<td>Command Box Gold connector(*)</td>
<td>Interlock connector gold (*)</td>
<td>Interlock OUT connector</td>
<td></td>
</tr>
<tr>
<td>Interlock cable</td>
<td>Safety Key</td>
<td>USB Stick</td>
<td>Cable gland</td>
</tr>
<tr>
<td>Rack adapters</td>
<td>Sample Test</td>
<td>User Manual</td>
<td>Test Report</td>
</tr>
</tbody>
</table>

* If this connector is used, the marking system works in **DANGEROUS** condition (MUTING DEVICE).
1.4 TRANSPORT

The marking system can’t be lifted up and moved by a single person thanks to its compact size and reduced weight.

WARNING!
To avoid damaging or breaking the optical fiber, never subject it a bending radius below the limits specified in the technical specification table.

Figure 3: Transport.

WARNING!
Vlase™ is a delicate optical laser marking system, avoid damaging it with shock and vibrations.

WARNING!
Be extremely careful to not damage the fiber optic cable between resonator and rack.

1.5 ON MOISTURE CONDENSATION

If the marking system is brought directly from a cold to a warm location, moisture may condense inside or outside the marking system. This moisture condensation may cause a malfunction of the marking system.

If moisture condensation occurs
Turn off the marking system and wait about 1 hour for the moisture to evaporate.

Note on moisture condensation
Moisture may condense when you bring the marking system from a cold place into a warm place (or vice versa) or when you use the marking system in a humid place as shown below.

How to avoid moisture condensation
When you bring the marking system from a cold place into a warm place, put it in a plastic bag and seal it tightly. Remove the bag when the air temperature inside the plastic bag has reached the ambient temperature (after about 1 hour).
1.6 FIXING AND POSITIONING

The marking system must be positioned in a safely manner and the precautions listed below must be followed.

![Figure 4: Positioning rack.](image)

![Figure 5: Vertical positioning (need additional fixing).](image)

*: DIMENSIONS ARE IN MILLIMETRES

WARNING!
DO NOT fix the marking system in manner not shown in figure.
The marking system can be fitted inside a special rack cabinet equipped with special support shoulders and handles, available on request. The figure below shows the mounting points for mounting in rack (rack handles available as accessory):

![Diagram of rack cabinet]

*: DIMENSIONS ARE IN MILLIMETRES

Figure 6: Fixing points on rack handles (cabinet assembly).

The resonator must be secured to a special base (not supplied by Datalogic) using the four M6 threaded holes.

The resonator, just like the control rack, must be safety positioned and secured on a special surface, parallel to the ground and absolutely vibration-free. The resonator can be secured both horizontally and vertically.

NOTE:
In order to prevent marking distortions, install a vibrometer on the base of the piece to be marked and check for the absence of vibrations during the marking process.

NOTE:
It is recommended to install the resonator on a micrometer positioning Z-axis system!

![Diagram of resonator fixing points]

*: DIMENSIONS ARE IN MILLIMETRES

Figure 7: Resonator fixing points

WARNING!
It is very important to secure marking system before you start marking the piece since improper securing or positioning may cause serious damage. Do not secure the marking system in a way other than the one described in the figure.
1.7 INSTALLATION ENVIRONMENT

The control rack must be installed in a suitable environment in order to allow proper air flow passage and correct housing of the cables.

Vlase™ is an air cooled marking system: an adequate air flow is necessary to guarantee correct cooling of the system. Installation must not slow or stop the flow of air cooling. Moreover, do not install a heat source near.

Clean air filter when it is dirty. If the air filter is dirty, the air-flow might become not sufficient to ensure correct cooling and might stop marking operation. Clean or exchange air filter periodically.

Figure 8: Rack installation environment.

![Figure 8: Rack installation environment.](image)

WARNING!

DO NOT place heavy objects on top of rack!

In order to have the marking system operating in safety mode (see Appendices for more details) we recommended to install the marking system as shown in figure below in order to limit laser output area. To obtain a good marking quality, and not to decrease life time, we recommended a ventilation or vacuum system in a protection box to limit dust due to marking phase.

Figure 9: Safety mode example.
1.8 FUME / DUST EXTRACTOR
During marking process, dust and/or gas may be produced. It is important to use adequate fume extractor and/or air filtration.

WARNING!
Marking PVC (or other plastic material) can cause the release of chlorine gas which can be **harmful** to the laser operator and to the marking system itself. Always use adequate fume extractor during PVC and plastic marking.

1.9 FAN INSTALLATION
The fan supplied with the device must be accurately positioned and fixed on the resonator so that it can work properly.
The fan must be assembled so that the air flow is aimed at the unit containing the crystal (gold-coloured section on the resonator).

![Figure 10: Fan installation.](image)
NOTE: BEFORE INSTALLING AND USING THE LASER, READ CAREFULLY THE APPENDICES.

WARNING!
Viase™ is a CLASS 4 LASER PRODUCT and it is the responsibility of the OEM/system integrator to provide the safety completeness to be ready-to-use.

2.1 TECHNICAL CHARACTERISTICS

CONTROL RACK MECHANICAL CHARACTERISTICS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>15 Kg</td>
</tr>
<tr>
<td>Height</td>
<td>122 mm</td>
</tr>
<tr>
<td>Width</td>
<td>430 mm</td>
</tr>
<tr>
<td>Depth</td>
<td>480 mm</td>
</tr>
</tbody>
</table>

RESONATOR WITH SCANNER HEAD MECHANICAL CHARACTERISTICS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (*)</td>
<td>7 Kg</td>
</tr>
<tr>
<td>Height</td>
<td>166 mm</td>
</tr>
<tr>
<td>Width</td>
<td>153 mm</td>
</tr>
<tr>
<td>Depth (**)</td>
<td>704 mm</td>
</tr>
</tbody>
</table>

(*) Without F-Theta.
(**) Vary from models.

NOTE:
Refer to Datalogic’s website for detailed drawings.
STORAGE AND TRANSPORTATION CONDITIONS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>-10° to 60°C (14° to 140°F)</td>
</tr>
<tr>
<td>Shock and vibrations</td>
<td>MIL 810E “CAT 1 Basic Transportation”</td>
</tr>
<tr>
<td>Package Drop Test</td>
<td>60 cm</td>
</tr>
</tbody>
</table>

WARNING!
This product includes precision optical parts; avoid vibration and shocks: marking quality may deteriorate.

ENVIRONMENTAL OPERATING CONDITIONS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental temperature</td>
<td>5°C to 40°C (41° to 104°F)</td>
</tr>
<tr>
<td>Humidity</td>
<td>< 90% without condensation</td>
</tr>
<tr>
<td>Altitude</td>
<td>< 2000 m</td>
</tr>
<tr>
<td>Pollution Degree</td>
<td>2</td>
</tr>
<tr>
<td>Overvoltage Category</td>
<td>II</td>
</tr>
</tbody>
</table>

ELECTRICAL POWER SUPPLY

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>100 to 240 V AC @ 50-60 Hz</td>
</tr>
<tr>
<td>Input Current</td>
<td>6 max</td>
</tr>
<tr>
<td>Max Power</td>
<td>600W</td>
</tr>
</tbody>
</table>

PERFORMANCE

LASER MARKER SOURCE *(specification @ 25°C)*

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser Type</td>
<td>Class 4 DPSSL (Diode Pumped Solid State Laser)</td>
</tr>
<tr>
<td>Average Power at reference Rep Rate (50kHz)(^1)</td>
<td>W 10.0</td>
</tr>
<tr>
<td>Pulse energy (max)</td>
<td>mJ 0.35 (10ns)</td>
</tr>
<tr>
<td>Peak power (max)</td>
<td>kW 35</td>
</tr>
<tr>
<td>Central emission wavelength</td>
<td>nm 532</td>
</tr>
<tr>
<td>Repetition Rate(^2)</td>
<td>kHz 20 ÷ 100</td>
</tr>
<tr>
<td>Laser aiming beam</td>
<td>Class 2 <1mW @ 630-670nm</td>
</tr>
<tr>
<td>Cooling</td>
<td>Forced Air</td>
</tr>
<tr>
<td></td>
<td>Rack Fans = L10 @ 40°C : 60000h</td>
</tr>
<tr>
<td></td>
<td>Resonator Fan = L10 @ 40°C : 70000h</td>
</tr>
<tr>
<td>Noise</td>
<td>dB(A) < 70 at 1 meter</td>
</tr>
</tbody>
</table>

OTHER

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Fiber Minimum Bending Radius</td>
<td>mm 200 (fixed installation)</td>
</tr>
<tr>
<td>Cables Length</td>
<td>m 3 standard, other available</td>
</tr>
<tr>
<td>Marking Speed</td>
<td>mm/s Up to 3000 mm/s</td>
</tr>
<tr>
<td>Char Marking Speed(^3)</td>
<td>char/s Up to 360 char/s</td>
</tr>
<tr>
<td>MOF (Marking on the fly)</td>
<td>YES [constant speed or encoder]</td>
</tr>
<tr>
<td>Line speed (^4) Productivity</td>
<td>Up to 75 m/min – 3 Pcs/s</td>
</tr>
<tr>
<td>Marking Control and Software</td>
<td>EMC Embedded Control and Lighter Suite</td>
</tr>
<tr>
<td>Communication</td>
<td>RS232, Ethernet (TCP/IP 10, 100 Mbit), digital I/O</td>
</tr>
</tbody>
</table>

\(^1\) Without F-Theta
\(^2\) Without Power derating
\(^3\) h char=1mm in roman s Level100% f=100kHz F-Theta160L on TESA label
\(^4\) Single line string, Roman-s font
2.2 DESCRIPTION OF THE MODULES

2.2.1 RESONATOR

A description of the main parts of the resonator unit is provided here below:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scan Head signals connector</td>
</tr>
<tr>
<td>2</td>
<td>USB type B jack</td>
</tr>
<tr>
<td>3</td>
<td>Fans connector</td>
</tr>
<tr>
<td>4</td>
<td>Rack-Resonator connector</td>
</tr>
<tr>
<td>5</td>
<td>RF connector</td>
</tr>
<tr>
<td>6</td>
<td>Cooling fans</td>
</tr>
<tr>
<td>7</td>
<td>Optic fiber inlet</td>
</tr>
</tbody>
</table>

Figure 11: Resonator view.
2.2.2 CONTROL RACK

A description of the control rack is provided here below for the purpose of obtaining the right information for proper installation of the marking system.

1) Status LED 11) MDR connector
2) Enable 12) Resonator signals connector
3) Key 13) Optic fiber output
4) USB port 14) RF connector
5) VGA port 15) Command Box connector
6) LAN port 16) I/O connector (axis control)
7) RS232 port 17) Photocell connector
8) 3x USB ports 18) Encoder connector
9) Interlock connector 19) Earth ground
10) Interlock OUT connector 20) Mains power supply connection

Figure 12: Control rack front view.
2.3 MARKING AREA SPECIFICATION

Datalogic provides a wide range of F-Theta scan lenses to be attached to the scanning head to focus the laser beam in flat Marking Field, in order to achieve high-resolution marking results.

These F-Theta scan lenses are available to best-match the object (i.e.: logo; string; 2D matrix; etc.) to be marked and fit the standard Datalogic Scanning Head; further solutions about different models of F-Theta scan lenses and scanning heads will be considered upon request.

The table below lists the standard F-Theta scan lenses currently available:

<table>
<thead>
<tr>
<th>F-Theta Scan Lens</th>
<th>$f = 160L$</th>
<th>$f = 254L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Distance (WD)</td>
<td>mm</td>
<td>176 ± 3</td>
</tr>
<tr>
<td>Fixing Distance (FD)</td>
<td>mm</td>
<td>170 ± 4</td>
</tr>
<tr>
<td>Marking Area (MA)</td>
<td>mm2</td>
<td>110 x 110</td>
</tr>
</tbody>
</table>

NOTE:
Definition of Marking Area: square marking field measured on black anodized aluminium plate.

WARNING!
This product was designed to use only certain configurations of F-Theta lens and marking field. If your needs are not satisfied by current available F-Theta lens configurations please contact Datalogic for a solution. The use of other F-Theta lenses or operation outside the specified marking field for a certain F-Theta lens configuration can lead to damage of F-Theta lens, scanning head or laser source. Such damage is not covered by warranty!

WARNING!
For each F-Theta lens configuration Datalogic recommends the use of certain adapter. This adapter ensures that residual back reflections caused by F-Theta lens do not damage optics of the scanning head. The removal of such adapter or its incorrect use (for example incomplete threading, use of another F-Theta lens adapter, etc.) can lead to damage of the F-Theta lens, scanning head or laser source. Such damage is not covered by warranty!
NOTE:
Working Distance is defined as the distance between the center of the marking area (defined in the focal plane) and the last mechanical edge of the F-Theta Scan Lens. Refer to the following figure.

WD: Working Distance
MA: Marking Area
AB: Aiming beam
FD: Fixing Distance

Figure 13: Marking area
2.4 CONNECTORS SPECIFICATIONS

2.4.1 INTERLOCK CONNECTOR

Interlock disables the Class4 laser source inside the marking system. Interlock internal circuit is designed to comply with the single fault condition.

PANEL CONNECTOR

Type SWITCHCRAFT TB Series male Tini Q-G (Mini XLR) panel mount connector, 4 positions.

![Interlock Connector Diagram]

Figure 14: Male panel plug cod. TB4M (front view).

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
<th>FUNCTIONAL DIAGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC_INT_IN_A</td>
<td>OUTPUT</td>
<td>24V DC reference for INTERLOCK_A signal</td>
<td>USER SIDE</td>
</tr>
<tr>
<td>2</td>
<td>INTERLOCK_A</td>
<td>INPUT</td>
<td>INTERLOCK IN signal A</td>
<td>SYSTEM SIDE</td>
</tr>
<tr>
<td>3</td>
<td>GND_INT_IN_B</td>
<td>GND</td>
<td>Ground reference for INTERLOCK_B signal</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>INTERLOCK_B</td>
<td>INPUT</td>
<td>INTERLOCK IN signal B</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PIN 1 - PIN 2</th>
<th>PIN 3 - PIN 4</th>
<th>MARKING FUNCTIONALITY</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTACT OPEN</td>
<td>CONTACT OPEN</td>
<td>NOT POSSIBLE</td>
<td>SAFE</td>
</tr>
<tr>
<td>CONTACT CLOSED</td>
<td>CONTACT OPEN</td>
<td>NOT POSSIBLE</td>
<td>DANGEROUS</td>
</tr>
<tr>
<td>CONTACT OPEN</td>
<td>CONTACT CLOSED</td>
<td>NOT POSSIBLE</td>
<td>DANGEROUS</td>
</tr>
<tr>
<td>CONTACT CLOSED</td>
<td>CONTACT CLOSED</td>
<td>POSSIBLE</td>
<td>DANGEROUS</td>
</tr>
</tbody>
</table>

WARNING!

In order to **NOT DAMAGE** the interlock circuitry, we recommended using “dry circuit” (zero voltage) switches or relay circuitry.
PLUG CONNECTOR
Connector type SWITCHCRAFT TA Series Tini Q-G (Mini XLR) female cable mount connectors, 4 positions.

Figure 15: Female cable mount connector cod. TY4F (solder view).

WARNING!
If the interlock gold connector is used, the marking system is in DANGEROUS condition (MUTING DEVICE).

NOTE:
To restore the marking system it is necessary to repeat the “Turning on sequence” without shutting down the system. See chapter 4.1 for more details.
2.4.2 INTERLOCK OUT

The interlock-out allows to monitoring of the operation of the interlock connector.

PANEL CONNECTOR
Panel socket BINDER, 4 positions female, 719 series.

![Female panel socket cod. 09-9766-30-04 (front view).]

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INT_OUT_A_COLLECTOR</td>
<td>COLLECTOR</td>
<td>Interlock OUT signal A (INT_OUT_A)</td>
</tr>
<tr>
<td>2</td>
<td>INT_OUT_A_EMITTER</td>
<td>Emitter</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>INT_OUT_B_COLLECTOR</td>
<td>COLLECTOR</td>
<td>Interlock OUT signal B (INT_OUT_B)</td>
</tr>
<tr>
<td>4</td>
<td>INT_OUT_B_EMITTER</td>
<td>Emitter</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USER SIDE</th>
<th>SYSTEM SIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT_OUT_A</td>
<td>INTERNAL CIRCUIT</td>
</tr>
<tr>
<td>INT_OUT_B</td>
<td>INTERNAL CIRCUIT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INT_OUT_A</th>
<th>INT_OUT_B</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed</td>
<td>Closed</td>
<td>SAFE</td>
</tr>
<tr>
<td>Closed</td>
<td>Open</td>
<td>DANGEROUS</td>
</tr>
<tr>
<td>Open</td>
<td>Closed</td>
<td>DANGEROUS</td>
</tr>
<tr>
<td>Open</td>
<td>Open</td>
<td>DANGEROUS</td>
</tr>
</tbody>
</table>

Type: NPN BJT transistor

- V_{max}: 300 V
- I_{max}: 60 mA
- $V_{saturation}$: < 1.5 V
- Leakage current: < 400 nA

NOTE!
The response time is 10 ms from the output’s switching.

PLUG CONNECTOR
Binder male cable mount connectors, 719 series, 4 positions.

![Male cable mount connector cod. 09-9767-00-04 (front view).]
2.4.3 COMMAND BOX CONNECTOR (LASER CONTROL)

Panel socket Sub-D, 25 positions, female.

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>TYPE (***)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12V_ENABLE_B</td>
<td>Output power supply</td>
<td>12V DC power supply available for EXT_ENABLE_B (max 250mA)</td>
</tr>
<tr>
<td>2</td>
<td>EXT_ENABLE_B</td>
<td>Digital Input</td>
<td>Secondary external ENABLE signal (see par. 2.4.3.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- HIGH level: contact closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- LOW level or disconnected: contact opened</td>
</tr>
<tr>
<td>3</td>
<td>RESERVED</td>
<td>Digital Output</td>
<td>DO NOT CONNECT</td>
</tr>
<tr>
<td>4</td>
<td>EXT_12V</td>
<td>Output power supply</td>
<td>Auxiliary 12V DC power supply available for drive input logical HIGH (max 250mA)</td>
</tr>
<tr>
<td>5</td>
<td>EXT_12V</td>
<td>Output power supply</td>
<td>Auxiliary 12V DC power supply available for drive input logical HIGH (max 250mA)</td>
</tr>
<tr>
<td>6</td>
<td>EXT_12V</td>
<td>Output power supply</td>
<td>Auxiliary 12V DC power supply available for drive input logical HIGH (max 250mA)</td>
</tr>
<tr>
<td>7</td>
<td>12V_ENABLE_A</td>
<td>Output power supply</td>
<td>12V DC power supply available for EXT_ENABLE_A (max 250mA)</td>
</tr>
<tr>
<td>8</td>
<td>EXT_ENABLE_A</td>
<td>Digital Input</td>
<td>Primary external ENABLE signal (see par. 2.4.3.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- HIGH level: contact closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- LOW level or disconnected: contact opened</td>
</tr>
<tr>
<td>9</td>
<td>BUSY (*)</td>
<td>Digital Output</td>
<td>This signal is used to know if the current spooler is executing (marking in progress) (see paragraph 2.4.3.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- ON during marking process</td>
</tr>
<tr>
<td>10</td>
<td>CONNECTOR PRESENCE</td>
<td>Digital Input</td>
<td>This signal is used to check the presence of the Command Box connector (see paragraph 2.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- HIGH level: normal operation;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- LOW level or disconnected: laser source faulty</td>
</tr>
<tr>
<td>11</td>
<td>START MARKING (*)</td>
<td>Digital Input</td>
<td>This signal is used to start to the marking process when a document or a sequence is running in AUTO MODE (*) or WORK MODE (): (see paragraph 2.4.3.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- HIGH level pulsed signal start the marking process</td>
</tr>
<tr>
<td>12</td>
<td>EXT_KEY</td>
<td>Digital Input</td>
<td>External KEY signal (see paragraph 2.4.3.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- HIGH level: contact closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- LOW level or disconnected: contact opened</td>
</tr>
<tr>
<td>13</td>
<td>STOP MARKING (*)</td>
<td>Digital Input</td>
<td>This signal is used to stop the marking process (see paragraph 2.4.3.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- HIGH level pulsed signal stop the marking process</td>
</tr>
<tr>
<td>14</td>
<td>RESERVED</td>
<td>Digital Input</td>
<td>DO NOT CONNECT</td>
</tr>
<tr>
<td>15</td>
<td>RESERVED</td>
<td>Digital Input</td>
<td>DO NOT CONNECT</td>
</tr>
<tr>
<td>16</td>
<td>RESERVED</td>
<td>Digital Input</td>
<td>DO NOT CONNECT</td>
</tr>
<tr>
<td>17</td>
<td>END</td>
<td>Digital Output</td>
<td>This signal is used to know if the marking process is finished (see paragraph 2.4.3.4): - ON at the end of marking process</td>
</tr>
<tr>
<td>18</td>
<td>POWER_ON</td>
<td>Digital Output</td>
<td>This signal is used to know if the system is already warmed up: (see paragraph 2.4.3.3) - ON when the laser is in STAND_BY or READY state</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>Ground</td>
<td>Ground reference</td>
</tr>
<tr>
<td>20</td>
<td>SYSTEM_ALARM</td>
<td>Digital Output</td>
<td>This signal is used to know if the system is in booting up state or in error state (see paragraph 2.4.3.3): - ON during BOOTING UP - ON in case of system error</td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
<td>Ground</td>
<td>Ground reference</td>
</tr>
<tr>
<td>22</td>
<td>ENABLE_OUT</td>
<td>Digital Output</td>
<td>This signal is used to know if the system is ready to emit laser radiation (see paragraph 2.4.3.3): - ON when the system is in READY state</td>
</tr>
<tr>
<td>23</td>
<td>SW_READY (*)</td>
<td>Digital Output</td>
<td>This signal is used to know if a document, sequence or script is loaded and ready to be executed: - ON when a document or a sequence is running in AUTO MODE () or WORK MODE () (SW_READY COMPATIBILITY () = true) - ON when a document or a sequence is running in AUTO MODE () and laser in READY state (SW READY COMPATIBILITY () = false) - ON when a script is running n AUTO MODE () and “IoPort.setReady (true)” function is used</td>
</tr>
<tr>
<td>24</td>
<td>GND</td>
<td>Ground</td>
<td>Ground reference</td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
<td>Ground</td>
<td>Ground reference</td>
</tr>
</tbody>
</table>

(*) refers to Lighter user’s manual “Setting I/O parameters” paragraph to set the signal properties
(**) refers to Lighter user’s manual
(***) refer to paragraph 2.5

NOTE:
Connection example in paragraph 2.6.
2.4.3.1 ENABLE SIGNAL’S SCHEME (COMMAND BOX CONNECTOR)

ENABLE

<table>
<thead>
<tr>
<th>EXT_ENABLE (A+B)*</th>
<th>FRONT PANEL ENABLE</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+12V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ENABLE CONTACT IS OFF</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXT_ENABLE (A+B)*</th>
<th>FRONT PANEL ENABLE</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+12V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ENABLE CONTACT IS OFF</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXT_ENABLE (A+B)*</th>
<th>FRONT PANEL ENABLE</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+12V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ENABLE CONTACT IS OFF</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXT_ENABLE (A+B)*</th>
<th>FRONT PANEL ENABLE</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+12V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ENABLE CONTACT IS ON</td>
<td></td>
</tr>
</tbody>
</table>

* EXT_ENABLE_A

<table>
<thead>
<tr>
<th>EXT_ENABLE (A+B)*</th>
<th>FRONT PANEL ENABLE</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+12V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>EXT_ENABLE CONTACT IS OFF</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXT.Enable (A+B)*</th>
<th>FRONT PANEL ENABLE</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+12V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>EXT_ENABLE CONTACT IS OFF</td>
<td></td>
</tr>
</tbody>
</table>

* EXT_ENABLE_B

Figure 19: ENABLE signal’s scheme
2.4.3.2 KEY SIGNAL’S SCHEME (COMMAND BOX CONNECTOR)

<table>
<thead>
<tr>
<th>KEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT_KEY (PIN 12)</td>
</tr>
<tr>
<td>+12V</td>
</tr>
<tr>
<td>+12V</td>
</tr>
<tr>
<td>+12V</td>
</tr>
<tr>
<td>+12V</td>
</tr>
</tbody>
</table>

Figure 20: KEY signal’s scheme

2.4.3.3 LASER CONTROL SIGNALS TIMING

Figure 21: Timing control signals
2.4.3.4 TIMING MARKING PROCESS SIGNALS TIMING

The following diagram illustrates the possible timings and settings of these signals:

INPUT
- Start_marking
 - HIGH
 - LOW
- Stop_marking
 - HIGH
 - LOW

OUTPUT
- Busy
 - ON
 - OFF
- End
 - ON
 - OFF

LASER OUTPUT

The time intervals in the diagram can all be programmed with a resolution of 1 ms (*).

- T_1: Start Time For setting the minimum acceptable time for the START_MARKING signal
- T_2: Start Delay For delaying the start of marking process
- T_3: Busy Advance BUSY signal corresponding to marking progress
- T_4: Stop Time The minimum time for STOP_MARKING signal to stop the marking process
- T_5: Busy Delay For delaying the Laser END signal with respect to laser emission
- T_6: End Time For setting the Laser End activation time

(*) Refer to Lighter user’s manual “Setting I/O parameters” to set the signal’s properties.
2.4.4 AXES CONNECTOR (I/O CONTROL)

Panel socket Sub-D, 25 positions, male.

Figure 23: Male panel socket Sub-D 25 (front view).

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>TYPE (**)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EXT_12V</td>
<td>Output Power supply</td>
<td>Auxiliary 12V DC power supply available for drive input logical HIGH (max 250mA)</td>
</tr>
<tr>
<td>2</td>
<td>OUTPUT_0 (*) or STEP_Y</td>
<td>Digital Output</td>
<td>Generic output or Y-Axis drive step signal (Clock) for axis control</td>
</tr>
<tr>
<td>3</td>
<td>OUTPUT_2 (*) or STEP_Z</td>
<td>Digital Output</td>
<td>Generic output or Z-Axis drive step signal (Clock) for axis control</td>
</tr>
<tr>
<td>4</td>
<td>OUTPUT_4 (*) or BRAKE X</td>
<td>Digital Output</td>
<td>Generic output or X-Axis electromechanical brake release signal. ON during drive motion</td>
</tr>
<tr>
<td>5</td>
<td>OUTPUT_6 (*) or BRAKE Y</td>
<td>Digital Output</td>
<td>Generic output or Y-Axis electromechanical brake release signal. ON during drive motion</td>
</tr>
<tr>
<td>6</td>
<td>OUTPUT_8 (*) or BRAKE Z</td>
<td>Digital Output</td>
<td>Generic output or Z-Axis electromechanical brake release signal. ON during drive motion</td>
</tr>
<tr>
<td>7</td>
<td>INPUT_0 (*) or ZERO X</td>
<td>Digital Input</td>
<td>Generic input or X-Axis home sensor input. The home search is stopped when this signal goes HIGH</td>
</tr>
<tr>
<td>8</td>
<td>INPUT_1 (*) or ZERO Y</td>
<td>Digital Input</td>
<td>Generic input or Y-Axis home sensor input. The home search is stopped when this signal goes HIGH</td>
</tr>
<tr>
<td>9</td>
<td>INPUT_2 (*) or ZERO Z</td>
<td>Digital Input</td>
<td>Generic input or Z-Axis home sensor input. The home search is stopped when this signal goes HIGH</td>
</tr>
<tr>
<td>10</td>
<td>INPUT_3 (*) or DISABLE X</td>
<td>Digital Input</td>
<td>Generic input or X-Axis disable signal. When HIGH, the corresponding step signal remains in the status prior to activation</td>
</tr>
<tr>
<td>11</td>
<td>INPUT_4 (*) or DISABLE Y</td>
<td>Digital Input</td>
<td>Generic input or Y-Axis disable signal. When HIGH, the corresponding step signal remains in the status prior to activation</td>
</tr>
<tr>
<td>12</td>
<td>INPUT_5 (*) or DISABLE Z</td>
<td>Digital Input</td>
<td>Generic input or Z-Axis disable signal. When HIGH, the corresponding step signal remains in the status prior to activation</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>Ground</td>
<td>Ground reference</td>
</tr>
<tr>
<td>14</td>
<td>OUTPUT_12 (*) or STEP R</td>
<td>Digital Output</td>
<td>Generic output or R-Axis drive step signal (Clock) for axis control</td>
</tr>
<tr>
<td>15</td>
<td>OUTPUT_1 (*) or STEP X</td>
<td>Digital Output</td>
<td>Generic output or X-Axis drive step signal (Clock) for axis control</td>
</tr>
<tr>
<td>No.</td>
<td>SIGNAL</td>
<td>TYPE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>16</td>
<td>OUTPUT_3 (*) or DIR Z</td>
<td>Digital Output</td>
<td>Generic output or Z-Axis drive direction signal</td>
</tr>
<tr>
<td>17</td>
<td>OUTPUT_5 (*) or DIR Y</td>
<td>Digital Output</td>
<td>Generic output or Y-Axis drive direction signal</td>
</tr>
<tr>
<td>18</td>
<td>OUTPUT_7 (*) or DIR X</td>
<td>Digital Output</td>
<td>Generic output or X-Axis drive direction signal</td>
</tr>
<tr>
<td>19</td>
<td>INPUT_9</td>
<td>Digital Input</td>
<td>Generic Input</td>
</tr>
<tr>
<td>20</td>
<td>INPUT_8</td>
<td>Digital Input</td>
<td>Generic Input</td>
</tr>
<tr>
<td>21</td>
<td>INPUT_7 (*) or ZERO R</td>
<td>Digital Input</td>
<td>Generic input or R-Axis home sensor input. The home search is stopped when this signal goes HIGH</td>
</tr>
<tr>
<td>22</td>
<td>INPUT_6 (*) or DISABLE R</td>
<td>Digital Input</td>
<td>Generic input or R-Axis disable signal. When HIGH, the corresponding step signal remains in the status prior to activation</td>
</tr>
<tr>
<td>23</td>
<td>OUTPUT_9 (*) or BRAKE R</td>
<td>Digital Output</td>
<td>Generic output or R-Axis electromechanical brake release signal. ON during drive motion</td>
</tr>
<tr>
<td>24</td>
<td>OUTPUT_11 (*) or DIR R</td>
<td>Digital Output</td>
<td>Generic output or R-Axis drive direction signal</td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
<td>Ground</td>
<td>Ground reference</td>
</tr>
</tbody>
</table>

(*) enable an axis cause that the corresponding signals will no longer be available as generic inputs/output. Refer to Lighter user’s manual, “Setting the X, Y, Z, and Rotor Axes parameters” to enable/disable Axes and set the Axes properties.

(**) refer to paragraph 2.5

2.4.5 RS232 CONNECTOR (COM2)

Panel socket Sub-D, 9 positions, male.

![RS232 Connector Diagram](image)

Figure 24: Male panel socket Sub-D 9 (front view).

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD</td>
<td>Input</td>
<td>Data Carrier Detect</td>
</tr>
<tr>
<td>2</td>
<td>RXD</td>
<td>Input</td>
<td>Receive Data</td>
</tr>
<tr>
<td>3</td>
<td>TXD</td>
<td>Output</td>
<td>Transmit Data</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
<td>Output</td>
<td>Data Terminal Ready</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
<td>Ground reference</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>Input</td>
<td>Data Set Ready</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>Output</td>
<td>Request to Send</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>Input</td>
<td>Clear to Send</td>
</tr>
<tr>
<td>9</td>
<td>RI</td>
<td>Input</td>
<td>Ringing Indicator</td>
</tr>
</tbody>
</table>
2.4.6 ENCODER CONNECTOR

Figure 25: Female panel socket cod. 09-3482-87-08 (front view).

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>GND</td>
<td>Ground signal</td>
</tr>
<tr>
<td>2</td>
<td>VCC</td>
<td>POWER OUTPUT</td>
<td>12V DC power supply</td>
</tr>
<tr>
<td>3</td>
<td>ENC_A</td>
<td>DIGITAL INPUT</td>
<td>Encoder HTL A channel signal</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>GND</td>
<td>Return signal for ENC_A</td>
</tr>
<tr>
<td>5</td>
<td>ENC_B</td>
<td>DIGITAL INPUT</td>
<td>Encoder HTL B channel signal</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>GND</td>
<td>Return signal for ENC_B</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>BODY</td>
<td>SHIELD</td>
<td>SHIELD</td>
<td>SHIELD</td>
</tr>
</tbody>
</table>

2.4.7 PHOTOCELL CONNECTOR
Panel socket Binder, M12, 4 positions female, 763 series. Recommended photocell: Datalogic S51-PA-5-B01-PK; Datalogic S15-PA-5-B01-PK or equivalent.

Figure 26: Female panel socket cod. 09-3482-87-04 (front view).

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>POWER OUTPUT</td>
<td>12V DC power supply</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>GND</td>
<td>Ground signal</td>
</tr>
<tr>
<td>4</td>
<td>PHOTOCELL</td>
<td>DIGITAL INPUT</td>
<td>PNP photocell signal</td>
</tr>
</tbody>
</table>

WARNING!
For EMC compliance a RICHCO RRC-16-9-28-M2-K5B (or equivalent) must be used.
2.5 INPUT/OUTPUT SIGNAL SPECIFICATIONS

DIGITAL INPUT:

<table>
<thead>
<tr>
<th>Type</th>
<th>Optocoupler</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{max}</td>
<td>24 V DC</td>
</tr>
<tr>
<td>I_{max}</td>
<td>5 mA @ 24 V DC</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>≥ 1 ms (debounce)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INPUT Logic LOW</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0 V DC</td>
<td>0.0 V DC</td>
<td>2.0 V DC</td>
</tr>
</tbody>
</table>

| INPUT Logic HIGH | 5.0 V DC | 12.0 V DC | 24.0 V DC |

DIGITAL OUTPUT:

<table>
<thead>
<tr>
<th>Type</th>
<th>Low side driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{max}</td>
<td>24 V DC</td>
</tr>
<tr>
<td>I_{max}</td>
<td>250 mA</td>
</tr>
<tr>
<td>$V_{\text{saturation}}$</td>
<td>< 0.5 V DC</td>
</tr>
<tr>
<td>Leakage current</td>
<td>< 5 µA</td>
</tr>
<tr>
<td>OUTPUT State ON</td>
<td>$V \leq 0.5$ V DC; $I \leq 250$ mA</td>
</tr>
<tr>
<td>OUTPUT State OFF</td>
<td>$V \leq 24$ V DC; $I \leq 5$ µA</td>
</tr>
</tbody>
</table>
2.6 CONNECTION EXAMPLE

Figure 27: Connection example.
3 INSTALLATION AND SET UP

3.1 CONNECTIONS
This section of the manual describes the marking system wiring. Carry out the connecting operations as described below.

WARNING!
Connect the marking system to other parts **WITHOUT** voltage in order to avoid risks for the operator and for the marking system.

3.1.1 CONNECTING COMMAND BOX CABLE

![Connecting Command Box cable](image)

Figure 28: Connecting Command Box cable.

NOTE:
The Command Box connector must always be inserted in order to use Enable and Key on the front panel of the rack.
3.1.2 CONNECTING INTERLOCK CABLE

Figure 29: Connecting interlock connector.

NOTE:
The interlock connector must always be inserted in order to use the marking system. The absence of such connector locks the system.

3.1.3 CONNECTING INTERLOCK OUT CONNECTOR

Figure 30: Connecting interlock OUT connector.
3.1.4 CONNECTING THE OPTICAL FIBER TO THE CONTROL RACK

Follow the steps listed here below to connect the optical fiber to the control rack:

1) unscrew the four screws holding the cover plate on the rack.

![Figure 31: Removing the cover plate from the rack.](image)

2) insert the optical fiber into the cable gland without removing its protection cap.

WARNING!
The insertion of the optical fiber is a delicate operation. You must make sure that the optical fiber is protected by his cap during insertion in the antenna cable to avoid damage or dirty it.

![Figure 32: Passing the optical fiber through the cable gland.](image)
3) insert the optical fiber into the PG cable gland mounted on the rear panel of the rack.

![Figure 33: Passing the optical fiber through the PG cable gland.](image)

4) remove the drain plug and tighten to form the fiber diode paying attention not to soil or scratch the fiber end.

![Figure 34: Connection of the optical fiber.](image)
5) fixing the cable gland on the PG.

6) closing rack top cover.

Figure 35: Fixing the cable gland.

Figure 36: Closing cover.
3.1.5 CONNECTING THE OPTICAL FIBER ON THE RESONATOR

Follow the steps listed here below to wire the optical fiber to the resonator:

1) unscrew the three screws that secure the metallic cover and cable gland to the resonator.

![Figure 37: Disassembling the optical fiber cable gland from the resonator.](image)

WARNING!
The insertion of the optical fiber is a delicate operation. You must make sure that the optical fiber is protected by his cap during insertion in the antenna cable to avoid damage or dirty it.

2) insert the optical fiber in the cable gland without removing the *protection cap*.

![Figure 38: Passing the optical fiber through the cable gland.](image)
3) remove the protection cap and insert the optical fiber in the resonator, being careful not to damage the end of the fiber or getting it dirty.

![Figure 39: Connecting the optical fiber to resonator.](image)

4) screw the protection cap back on the resonator.

![Figure 40: Final closing.](image)

WARNING!
To avoid damaging or breaking the optical fiber, never subject it to rays with a curve under 20 cm.
3.1.6 CONNECTING RADIOFREQUENCY CABLE

Screw in SMA connectors, starting at resonator side (90° end) then at the rack side.

Figure 41: RF cable connection.
3.1.7 CONNECTING MDR CABLE

Connecting MDR cable to rack:

Figure 42: MDR connection side rack.

Connect the other end of the cable to the scanner head.

Figure 43: MDR connection side resonator.
3.1.8 CONNECTING RESONATOR CABLE

Connecting resonator cable to rack:

Figure 44: Resonator cable connection side rack.

Connect the other end of the cable to the resonator.

Figure 45: Resonator cable connection side resonator.
3.1.9 CONNECTING FAN CABLE

Connect fan cable to resonator.

Figure 46: Resonator fan cable connection.
3.1.10 CONNECTING POWER SUPPLY CABLE
Connecting power supply cable.

![Power supply cable connection](Figure 47)

NOTE:
Lock the plug with the retaining clamp to avoid accidental disconnection.

3.1.11 GROUND CONNECTION
To ensure high electrical noise immunity it is strongly recommended to connect the chassis to earth plant.

![Ground connection](Figure 48)
3.1.12 LOCAL MODE CONNECTION

To use the marking system in “Local Mode” it is necessary to install a mouse, keyboard and monitor to the system. Connect the monitor and input devices to marking system as shown below:

Figure 49: USB mouse connection.

Figure 50: USB keyboard connection.
NOTE:
Minimum resolution 800 x 600.

3.1.13 REMOTE MODE CONNECTION

To use the marking system in “Remote Mode” it is necessary to connect a network cable:

NOTE:
The system LAN is configured by default with a fixed IP Address and Subnet Mask:
- Default IP address: 192.168.0.10
- Default Subnet Mask: 255.255.255.0
See chapter 5.2 in order to change LAN configuration.

NOTE:
Ethernet TCP/IP 10, 100 Mbit.
3.1.14 **F-THETA LENS PROTECTION CAP REMOVAL**

Remove the F-Theta Lens protection cap before marking operation.

WARNING!

Marking with the lens protection cap could result in damage to the lens.

Figure 53: F-Theta Lens protection cap removal.
4 USE AND OPERATION

4.1 TURNING ON SEQUENCE

Before turning on the marking system, be sure that the system is connected as previously described. Check presence of voltage power supply connection, interlock connector and Command Box connector. Check that Key and Enable commands on the rack front panel are disabled (see Figure 19 and Figure 20).

1ST: turn on the main switch in the back of the control rack:

Figure 54: Power on.

During booting-up, status LED on the rack front panel will be blinking green.

Wait the end of the booting-up. The status LED on the rack will be steady green.

Figure 55: Status LED display.
2ND: activate the command *KEY*, by rotating it clockwise:

![Figure 56: Enable command KEY.](image)

When the *KEY* command is enabled, the status LED on the rack will be blinking orange for about 20 seconds (laser source warm-up).

Wait the end of the laser source warm-up. The status LED on the rack and the LED bar on the Scan Head will be steady orange.

![Figure 57: Status LED display.](image)
3rd: activate the ENABLE signal by rotating it clockwise:

The marking system is ready to mark. The status LED on the rack will turn red.
RESUME TABLE

<table>
<thead>
<tr>
<th>STATUS</th>
<th>STATUS LED</th>
<th>INPUT STATUS (*)</th>
<th>OUTPUT STATUS (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM BOOTING UP</td>
<td>BLINKING GREEN (1Hz)</td>
<td>KEY LOW</td>
<td>SYSTEM_ALARM ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENABLE LOW</td>
<td>POWER ON OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENABLE OUT OFF</td>
</tr>
<tr>
<td>WAIT FOR START</td>
<td>STEADY GREEN</td>
<td>KEY LOW</td>
<td>SYSTEM_ALARM OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENABLE LOW</td>
<td>POWER ON OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENABLE OUT OFF</td>
</tr>
<tr>
<td>WARMING UP</td>
<td>BLINKING ORANGE (1Hz)</td>
<td>KEY HIGH</td>
<td>SYSTEM_ALARM OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENABLE LOW</td>
<td>POWER ON OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENABLE OUT OFF</td>
</tr>
<tr>
<td>STANDBY SHUTTER CLOSED</td>
<td>STEADY ORANGE</td>
<td>KEY HIGH</td>
<td>SYSTEM_ALARM OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENABLE LOW</td>
<td>POWER ON OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENABLE OUT OFF</td>
</tr>
<tr>
<td>READY</td>
<td>STEADY RED</td>
<td>KEY HIGH</td>
<td>SYSTEM_ALARM OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENABLE HIGH</td>
<td>POWER ON ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENABLE OUT ON</td>
</tr>
<tr>
<td>WARNING INVALID START SEQUENCE</td>
<td>BLINKING ORANGE (2Hz)</td>
<td>SYSTEM_ALARM OFF</td>
<td>POWER_ON OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENABLE_OUT OFF</td>
</tr>
<tr>
<td>SYSTEM ERROR</td>
<td>BLINKING RED (2Hz)</td>
<td>SYSTEM_ALARM ON</td>
<td>POWER_ON ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENABLE_OUT OFF</td>
</tr>
</tbody>
</table>

(*) See paragraph 2.4.3 for more information.

4.1.1 ADVICE ON USING THE SYSTEM

If the marking system is used in manual mode you need to connect Command Box connector as described before. In this way you are able to control the marking system directly on rack front panel.

If the marking system is used in automatic mode it is recommended to enable permanently Key and Enable commands positioned on rack front panel and to use remote signals (EXT_KEY and EXT_ENABLE) available on Command Box connector. This part is supplied with the product and you can connect external controls wiring connector contacts following pins description on chapter 2.6.
4.2 LOCAL MODE OPERATIONS

The local mode (with monitor, keyboard and mouse connected) is optimal to fully benefit of the ALL-IN-ONE Rack architecture characteristics.

4.3 REMOTE MODE OPERATIONS

Keyboard, mouse and monitor are not necessary in this configuration.
New IP ActiveX allows OEM integrators and end-users to create customized Applications and User Interfaces via Ethernet. Local or remote ActiveX control interface is available with the same commands to allow the use of the same application developed for both local and remote configurations.
4.4 OPERATING IN LOCAL MODE

Connecting monitor, mouse and keyboard to the laser system (see paragraph 3.1.12) allows the operator to access the console which contains the instruments to operate with laser.

Laser Editor is a software that allows to easily mark or engrave product identification information such as 2D matrix codes, barcodes, text, alpha-numeric serial numbers, date codes, part numbers, graphics and logos in any production environment. With Laser Editor you can:
- edit graphic layouts
- set laser parameters
- set marking system configuration
- control the integrated I/O module for axis management
- create automated procedures
- create programs using Lighter programming language

Laser Engine is an application automatically loaded at start-up that allows to operate the marking system. Laser Engine is present in the tray icon. With Laser Engine you can:
- monitor the system status
- select a saved document, display limits using a red laser pointer, watch the marking preview and do marking tests
- switch between Manual/Auto mode (engraving operations controlled by operator or external signals)
4.4.1 HOW TO CREATE AND EDIT YOUR FIRST GRAPHIC DOCUMENT

In "WAIT FOR START" status, double click on Laser Editor icon to start the layout editor application.

Click on the document type selector and choose Layer:

<table>
<thead>
<tr>
<th>SIGNAL</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT_KEY</td>
<td>OFF</td>
</tr>
<tr>
<td>EXT_ENABLE_A</td>
<td>OFF</td>
</tr>
<tr>
<td>EXT_ENABLE_B</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Work area - The graphic work area where the marking layout is represented.
Click on the **Text String** icon in the **Object toolbar** to add a string object to the layer:

Objects toolbar - It allows adding objects to the current document

Edit String properties such as value, font, style, etc. using the **Properties browser**.
Edit Filling properties such as filling type, interline, etc. using the Properties browser:
4.4.2 HOW TO TEST AND ENGRAVE YOUR DOCUMENT

In "STANDBY SHUTTER CLOSED" status, press Limits All button in the Laser Toolbar to adjust the object position in the marking field:

<table>
<thead>
<tr>
<th>SIGNAL</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT_KEY</td>
<td>ON</td>
</tr>
<tr>
<td>EXT_ENABLE_A</td>
<td>OFF</td>
</tr>
<tr>
<td>EXT_ENABLE_B</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Limits function - displays the bounding box of the object(s) present in the document. Margins are displayed using a red laser pointer.
In “READY” status, adjust the Laser parameters using the Properties browser:

<table>
<thead>
<tr>
<th>SIGNAL</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT_KEY</td>
<td>ON</td>
</tr>
<tr>
<td>EXT_ENABLE_A</td>
<td>ON</td>
</tr>
<tr>
<td>EXT_ENABLE_B</td>
<td>ON</td>
</tr>
</tbody>
</table>

Press Send Marking button in the Laser Toolbar to start the marking process:
4.4.3 HOW TO USE EXTERNAL SIGNALS TO ENGRAVE YOUR DOCUMENT

Automate the marking process allowing documents to be marked using external START_MARKING and STOP_MARKING signals, that can be generated by PLC or other external devices.

Click on **Save to Device** button to save the layout in the marking system memory:

![Save to Device](image1)

Click on **Show Laser Engine** button to display Laser Engine window:

![Show Laser Engine](image2)

AUTO/MANUAL Mode button allows switching between the two available working modes:

- Auto mode: the engraving operations are executed automatically using external signals.
- Manual mode: used for displaying the margins of the graphic objects to be marked and testing layouts.
Select the document from the list and click on **To Auto Mode** button:

The marking system is ready to mark document using external *START_MARKING* and *STOP_MARKING* signals:
4.5 THERMALIZATION AND SUPPRESSION OF GIANT PULSES

Thermalization is useful in order to obtain a good marking quality.

To obtain uniform markings and work processes is important to keep Nd:YVO4 crystal constantly pumped. This operation is called thermalization and is implemented supplying the laser diode with a suitable level of current. In this way a certain amount of pumping radiation at 808nm excites the crystal “but being the Q-switch closed” no laser radiation is emitted by the system.

With the Vlase™ source, this procedure can be implemented using Software Thermalization.

Software thermalization

Software thermalization is implemented automatically by the Lighter marking software and consists in defining, within the marking project, a certain thermalization level at which the crystal is maintained during the non-emission intervals. It is generally recommended to keep the level of thermalization similar to the power level used for the marking or slightly lower.

Figure 60: Temporal diagram of Software Thermalization.
As you can see in the graph shown in the Figure, during the marking phase the Q-Switch Modulation signal determines the frequency with which the laser pulses are generated, the effect of the LEVEL signal is a corresponding change in the laser diode current.

Please note that, in order for this to occur, the EMISSION signal has to be active.

NOTE:
Please also note that the current supplied to the laser diode is intentionally forced to have rising and falling times in the range of 150us. This protection from fast commutations (generated either from fast changes of LEVEL signal or from EMISSION signal front) is intended to reduce damage risk and extend lifetime of the diode itself.

During the thermalization phase, the EMISSION signal stays active, while the LEVEL signal goes into a preset thermalization level (i.e. 90%) and the Q SW MOD signal stays fixed at 0 V.

At the end of the thermalization phase, before starting another marking phase, the FPK (First Pulse Killing) procedure needs to be implemented in order to discharge the crystal, thus avoiding the generation of “giant” pulses which may cause marking defects as well as damages to the internal optics of the resonator.

To discharge the crystal, the Q-Switch is kept closed (Q SW MOD signal at 0 V) and the EMISSION signal is brought to a 0V level for at least 450 microseconds, so as to cut off the current in the laser diode and consequently the pumping of the crystal (FPK delay).

<table>
<thead>
<tr>
<th>Laser source</th>
<th>Frequency interval</th>
<th>Q-switch opening time (Shot Time)</th>
<th>Optimal FPK delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlase™ GREEN 10 W</td>
<td>20 kHz ÷ 100 kHz</td>
<td>0.4 µs (microseconds)</td>
<td>450µs</td>
</tr>
</tbody>
</table>

WARNING!
It is strongly recommended **NOT** to change FPK Shot time delay and set, because they have been optimized to ensure the safety of the marking system and the performance marking linked to the high stability of the laser pulses.
5 CUSTOMIZE THE SYSTEM’S SOFTWARE

5.1 CHANGE O.S. LANGUAGE AND KEYBOARD LAYOUT

The marking system allows you to personalize the operating system changing the language used in menus and dialogs, languages you can use to enter text and keyboard layout.

NOTE:
In order to perform this setting it is necessary to connect mouse, keyboard and monitor to the marking system (see paragraph 3.1.12).

- Turn OFF and ON the marking system and wait the end of the booting-up (the status LED on the rack must be steady green)
- From the main screen click on **Start > Control Panel**
- Select **Change display language**:
 ![Control Panel Settings](image)
In **Keyboards and Languages** select and choose the desired language.

Select **Change keyboards** to change your keyboard or input language:
Select now input languages and press OK:

Close all the open screens and double click on shortcut to save-data.bat icon in the Desktop screen.

A message advise you to restart or shutdown the system in order to permanently save data. Press OK:

Shut down the system in order to save the new settings:

WARNING!
DO NOT turn OFF or UNPLUG the system while Windows® is shutting down.

WAIT until system shuts down automatically (black screen)

Power off the system to complete installation
5.2 CHANGE LAN CONFIGURATION AND IP ADDRESS

The system allows you to change the LAN configuration and IP address.

NOTE:
In order to perform this setting it is necessary to connect mouse, keyboard and monitor to the marking system (see paragraph 3.1.12).

- Turn OFF and ON the marking system and wait the end of the booting-up (the status LED on the rack must be steady green)
- From the main screen click on **Start > Control Panel**

- Select **View network status and task:**

![Control Panel](image)
In the **Network and Sharing Center** screen select **Change adapter settings**:

![Network and Sharing Center](image)

- **View your basic network information and set up connections**
- **View your active network**
- **Connect to a network**
- **Change your networking settings**
 - Set up a new connection or network
 - Connect to a network
 - Choose homegroup and sharing options
 - Troubleshoot problems

See also
- HomeGroup
- Internet Options
- Windows Firewall

In the **Network Connections** screen double click on **Local Area Connection**

![Network Connections](image)

Local Area Connection
- Network cable unplugged
- Intel(R) 82567V-5 Gigabit Network C..
In the Local Area Connection Properties screen double click on Internet Protocol Version 4 (TCP/IPv4)

In the Internet Protocol Version 4(TCP/IPv4) Properties you can change the IP address and configuration

Close all the open screens and double click on shortcut to save-data.bat icon in the Desktop screen.

A message advise you to restart or shutdown the system in order to permanently save data. Press OK:

Save Data

Restart or Shutdown Windows to permanently save data. Do not turn OFF or unplug the system while Windows is restarting or shutting down

Shut down the system in order to save the new settings:

WARNING!
DO NOT turn OFF or UNPLUG the system while Windows® is shutting down.

WAIT until system shuts down automatically (black screen)

Power off the system to complete installation
5.3 CHANGE VIDEO SETTING
The system allows you to change the Video setting.

NOTE:
In order to perform this setting it is necessary to connect mouse, keyboard and monitor to the marking system (see paragraph 3.1.12).

- Turn OFF and ON the marking system and wait the end of the booting-up (the status LED on the rack must be steady green)
- From the main screen click on Start > Control Panel

 ![Control Panel]

- Select Adjust screen resolution:

 ![Adjust screen resolution]

- [Insert additional steps or explanations here if needed]
- In the **Screen Resolution** window select the desired Screen resolution and Colour quality:

![Screen Resolution Window](image)

- Close all the open screens and double click on shortcut to `save-data.bat` icon in the Desktop screen.

- A message advise you to restart or shutdown the system in order to permanently save data. Press **OK**:

![Save Data Window](image)

- **Shut down** the system in order to save the new settings:

![All Programs Window](image)

WARNING!

DO NOT turn **OFF** or **UNPLUG** the system while Windows® is shutting down.

- **WAIT** until system shuts down automatically (black screen)

- Power off the system to complete installation
5.4 REMOTE DESKTOP CONNECTION

To connect the marking system to a remote Windows® based computer, follow these steps:

- Turn on the marking system
- Make sure that both the marking system and remote computer are connected to the LAN
- Click **Start > All Programs > Accessories**, and then click **Remote Desktop Connection**
- Click **Options**
- In the Computer list, type the host name or the IP address of the computer to which you want to connect
- Type the user name, password, and domain (if applicable) of an account to which you have allowed remote access into the corresponding boxes, and then click **Connect**
In the Log On to Windows® dialog box that appears, type the password of the account with remote access privileges into the Password box:

User name: DLA
Password: dla

In the Log on to list, if applicable, select the domain or remote computer that you want, and then click OK.

The remote desktop is displayed in a window on the desktop. The remote computer is locked during this session.

To disconnect the session, click the Close button in the session window, and then click OK when you are prompted to disconnect the Windows® session.
6 ACCESSORIES

The accessories listed here below are described for information purposes only, and are not necessarily included in the packaging. The minimum contents of the packaging include the main hardware, cables and keys. For additional information, please refer to paragraph 1.2.

6.1 CONTROL BOX

Control and command device able to manage:
- Warmup the system
- Open the Shutter and enable laser emission
- Start and Stop the marking process
- Show the marking process status
- Show the system error status

![Control Box Diagram](image)

Figure 61: Control Box (Ordering no: 98533031).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 1 | Key selector
 Selector switch for EXT_KEY control signal |
| 2 | Enable selector / ENABLE indicator
 Selector switch for both EXT_ENABLE_A and EXT_ENABLE_B control signals with LED indicator for ENABLE_OUT control signal |
| 3 | Alarm indicator
 LED indicator for SYSTEM_ALARM control signal |
| 4 | Start button / BUSY indicator
 Pushbutton for START_MARKING control signal with LED indicator for BUSY control signal |
| 5 | Stop button / END indicator
 Pushbutton for STOP_MARKING control signal with LED indicator for END control signal |
| 6 | READY indicator
 LED indicator for SW_READY control signal |
| 7 | External connector
 Connection to Command Box connector |

* Refer to Command Box connector (see paragraph 2.4.3) for detailed control signal's description.

WARNING!

If the Control Box is used, the marking system works in **DANGEROUS** condition.
6.2 MARKING ON FLY KIT
The marking on fly kit is available on request. Kit includes: encoder, photocell, cables and plastic reflectors.

Figure 62: Kit MOF (Ordering no: 985330027).

6.3 CABLE KIT LENGTH PLUS
Cable Kit length plus are available on request.

Figure 63: Cable Kit length plus.
6.4 RACK HANDLES

Handles for rack fastening are available on request.

Figure 64: Handles rack.
7 TECHNICAL SUPPORT

7.1 SEALS
The engraving system has seals in some areas. The seals must not be broken or removed for any reason. The sealed parts may be opened only and exclusively by Datalogic. Breakage of these seals by a customer shall result in immediate cancellation of the warranty on the entire marking system.

WARNING!
If a customer breaks or removes the seals placed by the manufacturer on the marking system the warranty on the entire marking system will immediately become null and void.

WARNING!
The manufacturer shall not be held liable for any non-conforming use of the marking system of its manufacture.
It is forbidden to operate the marking system before the machine it is intended for has been declared in conformance with statutory Directives.

WARNING!
Access to the internal parts of the marking system is only permitted for authorized personnel, who have been trained and instructed on the electrical risks.
Datalogic shall not be held liable for work on electrically charged parts by inadequately trained personnel!

WARNING!
Access to the internal parts of the resonator is only permitted for authorized personnel, who have been trained and instructed on the optical risks!
Datalogic shall not be held liable for work on parts by inadequately trained personnel!
7.2 MAINTENANCE

The ordinary maintenance program foresees only simple operations. Some operations consist in a mere “check” of the operating condition.

The maintenance activities must be done in compliance with the law prescriptions regarding the safety rules during the operations.

The following parts/functions have to be controlled:

<table>
<thead>
<tr>
<th>COMPONENT OR FUNCTION</th>
<th>TYPE OF OPERATION</th>
<th>INTERVALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-Theta Scan Lens</td>
<td>Check / Clean</td>
<td>Weekly: wipe gently with a dry cloth (or soaked in high purity isopropyl alcohol) or clean it with air blowing</td>
</tr>
<tr>
<td>Rack Air filters</td>
<td>Clean / Replace</td>
<td>Every 3 months (according to the environment and frequency of use)</td>
</tr>
</tbody>
</table>

7.2.1 F-THETA SCAN LENS CLEANING PROCEDURE

WARNING!
Before cleaning the F-Theta scan lens, the marking system MUST be in set SAFE mode:
1. Disable EXT_ENABLE_A and EXT_ENABLE_B.
2. Disable INTERLOCK_A and INTERLOCK_B.

Figure 65: Cleaning F-Theta lens.
7.2.2 AIR FILTER CLEANING PROCEDURE

Figure 66: Removal of air filter.

WARNING!

In order to set the marking system in SAFE mode, disconnect AC power cable before starting this operation!

1. Turn off key switch on controller unit
2. Disconnect AC power cable
3. Loosen screws of front panel and remove them
4. Remove filter
5. Clean filter with air blow or with neutral detergent and air-dry it
6. Reinstall the filter and protective cover

WARNING!

DO NOT install wet filter!

7. If filter cannot be cleaned, replace the filter
8. Suitable filters are available as spare parts
7.3 PRODUCT SUPPORT AND CUSTOMER SERVICE

Warranty Information
Datalogic reserves the right to change the information and specification container in this manual without prior notice.

Product Support
In the unlikely event that the marking system does not function normally and that it requires attention, contact Datalogic for advice on further on-site fault diagnosis and/or module return.

If the marking system is to be returned to Datalogic, ensure that all relevant return documentation is in place before shipment. Details of documentation requirements and copies can be obtained where required from Datalogic.

Pack the marking system in the original packing and include all original accessories and documentation as detailed in the original inventory. It is advised that the correct and original packaging is used to prevent transit damage to the marking system. If part or all of the original packaging is unavailable, please contact Datalogic for replacement items. Please take time to complete all return documentation. This can be obtained from Datalogic and accurate details, diagnosis and comments in the documentation can help reduce turnaround time for module repair at Datalogic.

Customer Service Contacts

Product Support
support-dla-lasermarking@datalogic.com
Tel: +39 051-3147011

Customer Services
service-dla-lasermarking@datalogic.com
Tel: +39 0331-918001

Company Web Site
www.datalogic.com

For further contact information see the Contact Us link at www.datalogic.com or contact your local distributor.
APPENDIX A: LABELS IDENTIFICATION

<table>
<thead>
<tr>
<th>LABEL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Identification label</td>
</tr>
<tr>
<td></td>
<td>Warning logotype (Laser)</td>
</tr>
<tr>
<td></td>
<td>Laser Label (resonator)(^5)</td>
</tr>
<tr>
<td></td>
<td>Laser Label (control rack)(^5)</td>
</tr>
<tr>
<td></td>
<td>Aperture Label</td>
</tr>
<tr>
<td></td>
<td>Label for non-interlock protective housing</td>
</tr>
<tr>
<td></td>
<td>Caution, possibility of electric shock</td>
</tr>
<tr>
<td></td>
<td>General Warning</td>
</tr>
<tr>
<td></td>
<td>USB plug</td>
</tr>
<tr>
<td></td>
<td>MAC Address</td>
</tr>
</tbody>
</table>

\(^{5}\) Maximum output of laser radiation as per definition 3.55 of IEC60825-1 considering single fault conditions.
<table>
<thead>
<tr>
<th>Connector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2xT10A</td>
<td>Fuses</td>
</tr>
<tr>
<td>0 - I</td>
<td>KEY/ENABLE Positions</td>
</tr>
<tr>
<td>COMMAND BOX</td>
<td>Command Box connector</td>
</tr>
<tr>
<td>AXES (I/O)</td>
<td>Control Axes connector</td>
</tr>
<tr>
<td>INTERLOCK</td>
<td>Interlock Connector</td>
</tr>
<tr>
<td>INTERLOCK OUT</td>
<td>Interlock OUT Connector</td>
</tr>
<tr>
<td>LAN</td>
<td>LAN connector</td>
</tr>
<tr>
<td>RS232</td>
<td>RS232 connector</td>
</tr>
<tr>
<td>VGA</td>
<td>VGA connector</td>
</tr>
<tr>
<td>PHOT</td>
<td>Photocell connector</td>
</tr>
<tr>
<td>ENC</td>
<td>Encoder connector</td>
</tr>
<tr>
<td>RES</td>
<td>Resonator connector</td>
</tr>
<tr>
<td>MDR</td>
<td>Scan Head connector</td>
</tr>
<tr>
<td>RF</td>
<td>Radio frequency connector</td>
</tr>
<tr>
<td>FAN</td>
<td>Fan connector</td>
</tr>
</tbody>
</table>
EXTERNAL LABEL PLACING

Figure 67: Positioning of external labels.
Figure 68: Positioning of external labels (resonator).
APPENDIX B: STANDARDS

LASER STANDARDS
The marking system is designed to comply with the applicable sections of these laser standards:

EU : EN60825-1
USA : 21 CFR 1040.10

The marking system is classified as Class 4 Laser Product.

Datalogic, as manufacturer of marking system, provides a laser which is NOT intended for immediate use, but it must be connected, by others, to other devices which have the final aim of creating a laser processing system.

The final system manufacturer MUST ensure the safety of the laser processing machine according to its standards including the risk-analysis, implementation of safety measures, certification and testing of safety measures and the production of adequate information for use of the machine.

Datalogic is available for providing to the system integrator/OEM all the information in its possession to help in complying with applicable standards.

CE COMPLIANCE
CE marking states the compliance of the product with essential requirements listed in the applicable European directive.

Since the directives and applicable standards are subject to continuous updates, and since Datalogic promptly adopts these updates, therefore the EU declaration of conformity is a living document.

The EU declaration of conformity is available for competent authorities and customers by Datalogic commercial reference contacts.

Since 20th April 2016 the main European directives applicable to Datalogic products require to include an adequate analysis and assessment of the risk(s). This evaluation was carried out in relation to the applicable points of the standards listed in the Declaration of Conformity.

Datalogic products are mainly designed for integration purposes, into more complex systems. For this reason it is under the responsibility of the system integrator to do a new risk assessment regarding the final installation.

WARNING!
This is a Class A, Group 2 product according EN55011. In a Class B environment this product may cause radio interference in which case the user may be required to take adequate measures.

FCC COMPLIANCE
Modifications or changes to this marking system without the expressed written approval of Datalogic could void the authority to use the system.

This system complies with PART 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This system may not cause harmful interference, and (2) this system must accept any interference received, including interference which may cause undesired operation.

This marking system has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the system is operated in a commercial environment. This marking system generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this marking system in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
PERFORMANCE LEVEL (PL)

The PL is specified in EN-ISO13849-1. The risk analysis will lead to a PLr (Performance Level required) for a safety function based on the following graph:

![Graph showing Performance Level determination](image)

APPLICATION EXAMPLE

WARNING!

This example relate only to the features introduced in Vlase™ to assist in the risk reduction from the laser radiation. Any other risks (mechanical, electrical, etc.) must always be evaluated and must be taken appropriate risk reduction measures where necessary.

The Machinery Directive and EN 13849-1 are NOT applicable to the product Vlase™.

The target safety integrity or performance level (e.g. PLd according to ISO13849-1) shall be determined by the machine integrator, taking into account the machinery directive, the harmonized standards and any sector-specific standard that may apply.

WARNING!

This example is based on the parameters indicated on paragraph “Safety functions of Vlase™.”
EXAMPLE AUTOMATIC PRODUCTION LINE

In this case the Protective Housing may have a guard capable of being opened or removed typically only for service operation (frequency: seldom or occasional):

- Guard opening should only be possible with the aid of a tool.
- Guard safety switch is connected as input of a safety logic and Vlase™ interlock system as output/input of that safety logic.
- Warning label for access panel according EN60825-1 is provided.

Since the frequency is LOW (F1) and the removal of the guard is intentional, the MINIMUM REQUIREMENT as per IEC13849-1 is PLc.

Target: PLr = c

Severity of injury (S)
- S1 Slight (normally reversible injury)
- S2 Serious (normally irreversible injury or death)

Frequency and/or exposure times to hazard (F)
- F1 Seldom to less often and/or exposure time is short
- F2 Frequent to continuous and/or exposure time is long

Possibility of avoiding hazard or limiting harm (P)
- P1 Possible under specific conditions
- P2 Scarcely possible
SAFETY LOGIC TO VLASE™ DETAILS FOR AUTOMATIC PRODUCTION LINE

SAFE

SWITCH

LOGIC

VLASE

INTERLOCK OUT CONNECTOR

INTERLOCK CONNECTOR
PLC SAFETY DIAGRAM

True table in normal condition.

<table>
<thead>
<tr>
<th>INTERLOCK_A</th>
<th>INTERLOCK_B</th>
<th>INT_OUT_A</th>
<th>INT_OUT_B</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN</td>
<td>OPEN</td>
<td>CLOSED</td>
<td>CLOSED</td>
<td>SAFE</td>
</tr>
<tr>
<td>CLOSED</td>
<td>OPEN</td>
<td>CLOSED</td>
<td>OPEN</td>
<td>DANGEROUS</td>
</tr>
<tr>
<td>OPEN</td>
<td>CLOSED</td>
<td>OPEN</td>
<td>CLOSED</td>
<td>DANGEROUS</td>
</tr>
<tr>
<td>CLOSED</td>
<td>CLOSED</td>
<td>OPEN</td>
<td>OPEN</td>
<td>DANGEROUS</td>
</tr>
</tbody>
</table>

CHARACTERISTICS OF COMPONENTS

DOOR SWITCH: SAFETY SWITCH, designed in compliance with the standard currently in effect IEC60947, EN292, EN60204, EN1088. Two redundant contacts. IP67. B10d=2000000.

SAFETY LOGIC: main component SAFETY PLC min. PLd according EN13849-1. Output type relays, min 10mA. To be installed in an IP54 enclosure.

CONCLUSIONS

Because MTTFd is greater than 100 years, Category is 3, DC max achievable is 99% then the PLr=c is satisfied.
SAFETY FUNCTIONS OF VLASE™

VLASE™ provides inputs, outputs, and actuators to implement the following safety functions:

- SF.1 ENABLE (e.g. no GREEN laser output if "EXT_ENABLE_A" or "EXT_ENABLE_B" are disabled, where "disabled" means contacts open)
- SF.2 INTERLOCK (e.g. no GREEN laser output if "INTERLOCK_A" or "INTERLOCK_B" are disabled, where "disabled" means contacts open)

These functions have been evaluated according to UNI EN ISO 13849-1. The results are:

- SF.1:
 - Category: B
 - MTTFd < 10 years
 - DC: none according category

- SF.2:
 - Category: 3
 - MTTFd = 4496 years
 - DC: feedbacks are provided. The determination of the diagnostic coverage (DC%) is then assigned to the integrator of the system depending on realized supervision system.
 - Response time: 10ms
APPENDIX D: NOTE ABOUT LASER

LASER SAFETY
The following information is provided in compliance with regulations set by International Authorities, and it refers to the correct use of marking system.

WARNING!
It is crucial that you protect yourself against beams of reflected or direct light as they cause permanent damage to your skin.

WARNING!
Staring directly at a laser beam may cause irreversible damage to your eyes.

WARNING!
Wear safety goggles while using the marking system!

NOTE:
BEFORE INSTALLING AND USING THE LASER, READ CAREFULLY THE APPENDIX CONCERNING LASER SAFETY.
LASER RADIATION

Laser radiation is an electromagnetic emission with a micrometric wavelength which ranges from the long infrared (CO\textsubscript{2} Laser), close infrared (Nd Laser: Yag, Nd: YVO\textsubscript{4}), visible (He Laser: Ne or Argon) and ultraviolet (excimer laser).

It should be considered non-Ionizing Radiation. In VlaseTM marking system, the emission of a crystal bar is stimulated by “optical pumping” generated by a Diode Laser. The continuous reflection of Photons, between a front mirror and rear mirror, creates a positive reaction so that their number continues to increase, until reaching the concentration necessary to produce a beam which projects from the semi-reflecting front mirror. The radiation (which we can imagine as a “Beam of invisible light”) is then Collimated and Focalized with Lenses at a point where the intensity becomes high enough to be able to react with various materials producing an alteration in them due to thermal effect.

The radiations of VlaseTM marking system are visible and invisible and the Eye receives it almost in its entirety without using the natural defense provided by pupil reflex! Added to this is the fact that it is generally very intense, with the result that it can be very harmful to the eye and present vision problems.

\textbf{WARNING!}
Directly viewing a laser beam can cause irreversible damage to vision.

To prevent permanent damage to vision, a few precautions must be taken. All individuals who may be exposed to dangerous levels of laser radiation, must know that the laser is active and wear protective goggles if necessary.

Due to its high power, the laser integrated in the Datalogic system provokes reflected laser light from flat surfaces. Reflected light is potentially dangerous for the eyes and skin. Electromagnetic emission with a micrometric wave length is placed in long infrared, and is therefore invisible, thus it is not clear where reflected beams are aimed.

\textbf{WARNING!}
It is indispensable to protect yourself from reflected light beams, because they can be sufficiently intense to create permanent injury to the eyes or skin.

In addition to possible injury to the eyes or skin, direct laser emission can cause flammable materials to burn like organic solvents (alcohol, acetone) or gasoline and cause fabric and clothing to burn.

\textbf{WARNING!}
This marking system is classified as Class 4. Class 4 includes lasers which can produce risks, not only from direct or reflected radiation, but also from scattered radiation! The laser sources may be a significant risk for the skin and risk of burning flammable materials.
ABSORPTION OF LASER RADIATION

Human skin absorbs electromagnetic radiation in different ways depending on the wave length of the radiation. Both the eye and skin have a “predisposition” for accepting certain wave lengths, and are more unresponsive to absorbing others. In the specific case of the Eye, the Cornea and Crystalline lens let all the wave lengths from 400 to 1400 nm pass and reach the Retina, even with various attenuations. They include the range from visible light to IRA infrared. Thus Nd:YVO₄ laser radiation (532 nm wavelength) is included in this range and leads to direct Retina exposure!

In terms of the Skin, the “biological window” has different absorption percentages but is not dissimilar in terms of wave length. The maximum exposure values for Skin are much different compared to those tolerated by the Eye.

![Figure 70: Eyeball section.](image)

In terms of the damage mechanism that absorbed radiation can cause, it also depends on the wave length. Short lengths (ultraviolet: UV-C 180-280nm; UV-B 280-315 nm, UV-A 315-400 nm) generally cause photochemical effects:

- cataract, or opacification of the crystalline lens
- melanic coloring, or reddening of the skin

Greater wavelengths (infrared: IR-A 780-1400 nm; IR-B 1400 3000 nm; IR-C 3000-10⁶ nm) generally cause thermal effects:

- detachment or photocoagulation of the retina
- burning of the skin

The degree of injury obviously depends on the amount of absorbed radiation and the instantaneous power of the radiation source.

CLASSIFICATION AND DANGER LEVEL

Regulations have established different classes of Laser danger based on the ability to injure people, from Laser Class 1 (basically safe in all conditions) to Laser Class 4 dangerous in various conditions.

Lasers which can produce risks, not only for direct or reflected radiation, but also for scattered radiation belong to Class 4. These Laser sources can also have a significant risk for the Skin and fire risk for flammable material. For these reasons, the User must put into effect all measures aimed at containing the radiation to make sure that it is terminated at the end of its useful path. The operator must also be informed of the risks from exposure to Laser radiation and must wear specific I.P.D. (individual protection devices) including goggles that protect against radiation and are certified as suitable for this use.

WARNING!
The Vlase™ marking system contains a Class 4 invisible laser source.
RADIATION VIEWING CONDITIONS

The Laser output by the resonator is to be considered as a highly collimated and intense monochromatic light source. Due to these characteristics it can be seen as a "point source" of high luminosity. This means that its image is then focalized on the Retina in a very small spot with a dangerously high power density! If the beam becomes divergent and scatters to a non-reflecting screen, then there is an "extended vision" of the image, with a decisively less dangerous power density. So there are different types of radiation viewing based on the access to the radiation and consequently different degrees of dangerousness.

DIRECT VIEWING OF THE LASER BEAM

This type of viewing is the most dangerous and can occur at the outlet of the laser aperture after having removed the lens. It is to be avoided at all costs! No protective goggles represent a valid means against direct viewing of the beam.

DIRECT VIEWING OF THE BEAM AFTER MIRROR REFLECTION

This may occur by directing the beam on a reflecting surface. Viewing of a mirror reflected beam from a flat surface is very dangerous and equal to direct viewing.

DIRECT VIEWING OF THE BEAM OUTPUT BY AN OPTICAL FIBER

This happens if an Optical Fiber disconnects from the resonator. Viewing of the beam is dangerous up to a significant distance. Filters and Goggles do not ensure safety.

DIRECT VIEWING OF THE BEAM AFTER FOCUSING

This occurs if the laser beam is not extinguished with an opportune absorber at the end of its useful path. Looking at the beam is dangerous up to a considerable distance. Filters and goggles can ensure safety for brief exposure, as long as they are the right size and certified.

SCATTERED VIEWING OF THE BEAM AFTER FOCUSING

This is the most frequent viewing, but opportune Filters and Goggles can ensure safety, even for prolonged exposure. The Nominal Ocular Hazard Distance (N.O.H.D.) for Vlase™ are showed in the next paragraph.

WARNING!

Always use goggles with conformity certificate. Remember that no goggles can provide prolonged protection from direct or mirror-reflected radiation!
N.O.H.D. DETERMINATION AND O.D. OF PROTECTION GOGGLES

In order to determine the characteristics of the protection goggles, it is essential to determine the characteristics of the radiation, knowing its optical path, the dimensions of the beam and its divergence.

In particular, it is very important to know the real divergence of the beam in output from the objective (F-Theta).

With all these optical data, it is possible the calculations of the Nominal Ocular Hazard Distance (N.O.H.D.) and of the optical density (O.D.) requested to the protection filters of the laser radiation.

Calculations have been done following the CEI EN 60825-1 (2014) Normative regarding nominal distance and optical risk in the worst condition and in case of accident exposure of 10 seconds for direct radiation and 100 seconds for diffused radiation.

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>532 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application type</td>
<td>Marking</td>
</tr>
<tr>
<td>Emission type</td>
<td>Q-Switched</td>
</tr>
<tr>
<td>Observation type</td>
<td>Direct radiation</td>
</tr>
<tr>
<td>Pulse energy</td>
<td>Vlase™ 2109-TFS2: 350 µJ @ 20 kHz</td>
</tr>
<tr>
<td>Pulse duration</td>
<td>Vlase™ 2109-TFS2: 10 ns</td>
</tr>
<tr>
<td>Beam Diameter at 9X Beam Expander Output (1/e2)</td>
<td>Vlase™ 2109-TFS2: 5.0 mm</td>
</tr>
<tr>
<td>Beam divergence on the lens</td>
<td>Vlase™ 2109-TFS2: 0.8 mrad</td>
</tr>
<tr>
<td>Focal of the F-Theta lens</td>
<td>160 mm</td>
</tr>
<tr>
<td>Real divergence after the lens</td>
<td>Vlase™ 2109-TFS2: 31.2 mrad</td>
</tr>
<tr>
<td>Exposure time</td>
<td>10 s</td>
</tr>
</tbody>
</table>
ACCIDENTAL CONDITION OF VISION OF THE DIRECT REFLECTED RADIATION

Assuming a direct exposure of 10 seconds at a nominal distance of 0.5 m (worst case) is possible to calculate the suitable optical density for safety goggles.

The O.D. (Optical Density) in last column assures the reduction of laser radiation below max acceptable exposure:

\[\text{O.D.} = \log \left(\frac{H}{\text{EMP}} \right) \]

where EMP is the Maximum Permissible Exposure and H is the radiant exposure.

<table>
<thead>
<tr>
<th>Source</th>
<th>N.O.H.D. (Nominal Ocular Hazard Distance)</th>
<th>O.D. (Optical Density)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VlaseTM GREEN</td>
<td>26.8 m</td>
<td>> 3.85</td>
</tr>
</tbody>
</table>

SCALE INDEX OF THE PROTECTION GOGGLES FILTER

The scale index L of the filters indicates the stability to the radiation, that means the ability of the filter to maintain its characteristics unchanged. This stability is certified by the producer according to the EN 207 with tests conducted for 10 seconds or 100 pulses.

It is then necessary to verify that the scale index of the adopted filter is stable for this period and foreseen an adequate over dimensioned in order to make sure that it could last longer than the accidental exposure period.

In case of exposure at 0.5 m for 10 seconds the suggested optical density for safety goggles is CLASS L4.
EYES AND SKIN RISKS
If exposed to intense Laser radiation, even of a short duration, or a less intense but longer lasting duration, both the Cornea and the Retina can burn and be damaged irreparably forever. This consequence is completely realistic in the event of direct viewing of a Class 4 Laser beam.

If subject to direct focalized radiation, even the skin can burn.

In addition, it is necessary to bear in mind that a collateral ultraviolet radiation may exist with the main radiation: long exposure may cause skin cancer.

GENERAL SAFETY REGULATIONS
The User must comply with the regulations and work in the best possible safety conditions to prevent decreasing the degree of marking system safety. Therefore it is necessary to develop a Standard Operating Procedure (S.O.P.) related to maneuvers to effect for turning on and off the marking system. This procedure, which shall be prepared around the time of installation, shall serve as a reference for the Operator and shall be written in his/her language.

Training is essential and must include:
- Familiarization with system operating procedures.
- Knowledge of the biological effects of radiation on the Eyes and Skin.
- Understanding of the necessity for Individual Protection Devices (I.P.D.)

COLLATERAL RISKS
If the intended use of the marking system changed, for example for material processing applications, collateral risks may arise represented by the production of fumes and vapors which may be irritating or toxic, if not removed and adequately filtered before being released into the air again.

WARNING!
It is advisable not to change the intended use without previously contacting the Manufacturer.

An additional risk may be represented by fire caused by processing materials other than those the marking system is designed for.

WARNING!
When processing flammable material, since there is a fire danger, it is indispensable to follow the instructions provided by the manufacturer when the system is commissioned.

WARNING!
Do not subject materials other than those the marking system was designed for to radiation.
The most serious collateral risk associated with laser marking system, which may be fatal, is electricity. This may occur when the manufacturer’s warning and procedures are not followed. Unauthorized and untrained personnel must never do any work on the electrical part. The safety devices must never be removed and their operation must be periodically checked.

WARNING!

Do not work on the electrical part if you are not trained to do so. **Do not remove protection devices.**

For example, during the intended use of the marking system, if a material being processed undergoes alterations and produces irritating and/or toxic fumes, it may be necessary to remove the fumes from processing before releasing them into the air.

An additional risk may be represented by fire caused by processing materials other than those the system was designed for.

WARNING!

Do not subject materials other than those the marking system was designed for to radiation.
APPENDIX E: SOFTWARE UPGRADE

This document describes how to update software version:

1. Close the Lighter and Laser Engine (Click on QUIT)

2. Do Lighter UNINSTALL: you cannot run the new installer before having removed the old SW version
3. Wait the end of uninstall procedure.

4. Run new Lighter installer from an external device (USB dongle).

5. Wait until installation procedure is completed.

6. Depending on whether the Lighter update includes any control board updates, the following screen may appear:

![New updates are ready to install](image)

Updates for your DSP Board are available. Click OK to install updates.

- Procedure with control board update:
 - press **OK** to execute control board update
 - upon completion, a window informs user that data is automatically saved in the system
 - system will be shut down automatically within the next 10 seconds

WARNING!

DO NOT restart the system or turn off the system!

- wait until system shuts down automatically (black screen)
- power off the system to complete installation
• Procedure without control board update:

 o a window informs user that data is automatically saved in the system

 ![Image]

 o system will be restarted automatically within the next 10 seconds

WARNING!

DO NOT restart the system or turn off the system!

 o wait until system is restarted automatically
The marking system is provided with a **USB recovery disk** able to restore the system to the factory settings. The **USB recovery disk** should be used if the *Operating System is corrupted* or disks are *corrupted*.

WARNING!
All the existing data in the system will be overwritten. All existing data will be lost!

The recovery procedure requires the **USB recovery disk** which is included in the standard equipment.

Procedure:

- Turn OFF the system
- Insert the USB recovery disk provided with the system in the USB port
- Turn ON the system and press **ESC** key to enter BIOS menu
- Go to BOOT menu, select **Hard Drive BBS Priorities** and press **ENTER** key
- Select **Boot Option #1** and press **ENTER** key
- Select the USB disk from the list and press **ENTER** key
- Press **F4** key
- Select **YES** and press **ENTER**
- The system will restart and Clonezilla live will boot from the USB disk
- Select Datalogic Recovery Disk procedure

- Press **ENTER** key to continue

- Choose **RESTORE_DISK_C_PCM3365** to restore disk C: and press **ENTER** key

- In the next screen, choose sdb as target disk and press **ENTER** key
o Wait for the end of the procedure (about 10 minutes):

```
Partclone
Partclone v0.2.56 http://partclone.org
Starting to restore image (-) to device (/dev/sda1)
Calculating bitmap... Please wait... done!
File system: EXT4
Device size: 5.0 GB = 1220352 Blocks
Space in use: 1.2 GB = 300953 Blocks
Free Space: 3.8 GB = 919399 Blocks
Block size: 4096 Byte

Elapsed: 00:00:02 Remaining: 00:00:07 Rate: 7.81GB/min
Current Block: 149956 Total Block: 1220352
```

o Select **Enter command line prompt** and press ENTER key

```
Now you can choose to:
0 Poweroff
1 Reboot
2 Enter command line prompt

<OK> <Cancel>
```

o Select **Start over** and press ENTER key

```
Now you can choose to:
poweroff Poweroff
reboot Reboot
cmd Enter command line prompt
renuni Start over (image repository /home/partimag, if mounted, will be umounted)

<OK>
```
Choose **RESTORE_DISK_D_PCM3365** to restore *disk D:* and press **ENTER** key

In the next screen, choose **sda** as target disk and press **ENTER** key

Wait for the end of the procedure (**about 2 minutes**):

Select **Poweroff** and press **ENTER** key

Wait some seconds until the shutdown process is done

Turn OFF the system using the main switch

Remove the USB recovery disk from the USB port
Customize the system

NOTE:
In order to work, the system must be customized with the correct configuration file.

- Turn ON the system
- An error message will advise you that Lighter configuration file is not present:

```
Press OK to continue
```

- After all drivers are installed click “Restart Later” button in restart window
- Insert the USB recovery disk provided with the system in the USB port
- Navigate to **Fileinz and report** folder on the USB recovery disk
- Copy customized **Laser.inz** file in D:\DATA\CONFIG folder on the system

```
Select Test Layouts folder on the USB recovery disk
Select the right **test layouts files** based on the laser system model
Copy the selected **test layouts files** file in D:\DOCS\LAYOUTS folder on the system
```
Double click on shortcut to save-data.bat icon in the Desktop

A message advise you to restart or shutdown the system in order to permanently save data. Press **OK**:

![Save Data](image)

Restart or Shutdown Windows to permanently save data. Do not turn OFF or unplug the system while Windows is restarting or shutting down

Shut down the system in order to save the new settings:

![Shut down](image)

WARNING!
DO NOT turn OFF or UNPLUG the system while Windows® is shutting down.

- **WAIT** until system shuts down automatically (black screen)
- Remove the USB recovery disk from the USB port
- Power off the system to complete installation
APPENDIX G: MECHANICAL DRAWINGS

- Refer to the Vlase rack
- Dimensions are in millimeters

1. Optical Fiber Exit
2. Removable components
3. Dimensions:
 - Width: 69.65 mm
 - Height: 122.1 mm
 - Depth: 430 mm

111
NOTA:
Please refer to Datalogic website for detailed drawings.
FIGURES

Figure 1: Control rack and resonator with scan head... vii
Figure 2: Unpacking... 10
Figure 3: Transport... 12
Figure 4: Positioning rack.. 13
Figure 5: Vertical positioning (need additional fixing)... 13
Figure 6: Fixing points on rack handles (cabinet assembly).. 14
Figure 7: Resonator fixing points.. 14
Figure 8: Rack installation environment... 15
Figure 9: Safety mode example... 15
Figure 10: Fan installation... 16
Figure 11: Resonator view... 19
Figure 12: Control rack front view... 20
Figure 13: Marking area... 22
Figure 14: Male panel plug cod. TB4M (front view)... 23
Figure 15: Female cable mount connector cod. TY4F (solder view).. 24
Figure 16: Female panel socket cod. 09-9766-30-04 (front view).. 25
Figure 17: Male cable mount connector cod. 09-9767-00-04 (front view).............................. 25
Figure 18: Female panel socket Sub-D 25 (front view).. 26
Figure 19: ENABLE signal’s scheme... 28
Figure 20: KEY signal’s scheme... 29
Figure 21: Timing control signals... 29
Figure 22: Timing signals... 30
Figure 23: Male panel socket Sub-D 25 (front view)... 31
Figure 24: Male panel socket Sub-D 9 (front view)... 32
Figure 25: Female panel socket cod. 09-3482-87-08 (front view).. 33
Figure 26: Female panel socket cod. 09-3482-87-04 (front view).. 33
Figure 27: Connection example... 35
Figure 28: Connecting Command Box cable.. 36
Figure 29: Connecting interlock connector.. 37
Figure 30: Connecting interlock OUT connector... 37
Figure 31: Removing the cover plate from the rack... 38
Figure 32: Passing the optical fiber through the cable gland.. 38
Figure 33: Passing the optical fiber through the PG cable gland... 39
Figure 34: Connection of the optical fiber.. 39
Figure 35: Fixing the cable gland.. 40
Figure 36: Closing cover... 40
Figure 37: Disassembling the optical fiber cable gland from the resonator............................ 41
Figure 38: Passing the optical fiber through the cable gland. ... 41
Figure 39: Connecting the optical fiber to resonator. ... 42
Figure 40: Final closing.. 42
Figure 41: RF cable connection ... 43
Figure 42: MDR connection side rack. .. 44
Figure 43: MDR connection side resonator. ... 44
Figure 44: Resonator cable connection side rack. ... 45
Figure 45: Resonator cable connection side resonator. .. 45
Figure 46: Resonator fan cable connection. ... 46
Figure 47: Power supply cable connection. .. 47
Figure 48: Ground connection. ... 47
Figure 49: USB mouse connection. ... 48
Figure 50: USB keyboard connection. .. 48
Figure 51: VGA monitor connection. ... 49
Figure 52: RJ45 Ethernet connection. ... 49
Figure 53: F-Theta Lens protection cap removal. ... 50
Figure 54: Power on. ... 51
Figure 55: Status LED display .. 51
Figure 56: Enable command KEY. ... 52
Figure 57: Status LED display .. 52
Figure 58: Enable command ENABLE. .. 53
Figure 59: Status LED display .. 53
Figure 60: Temporal diagram of Software Thermalization. ... 65
Figure 61: Control Box (Ordering no: 985330031). .. 77
Figure 62: Kit MOF (Ordering no: 985330027). .. 78
Figure 63: Cable Kit length plus. ... 78
Figure 64: Handles rack ... 79
Figure 65: Cleaning F-Theta lens. .. 81
Figure 66: Removal of air filter. .. 82
Figure 67: Positioning of external labels ... 86
Figure 68: Positioning of external labels (resonator). ... 87
Figure 69: Determining the required Performance Level (PLr). .. 89
Figure 70: Eyeball section. ... 96