DT9000
Development Kit
V1.1

DIioMmornd

TEecHNoLrogies

6 Clock Tower Place
Suite 100

Maynard, MA 01754
USA

Tel: (866) 837-1931
Tel: (978) 461-1140
FAX: (978) 461-1146

http://www.diamondt.com/

Liability

Diamond Technologies Inc. shall not be liable for technical or editorial errors or omissions contained herein, nor for
incidental or consequential damages resulting from the use of this material. Those responsible for the use of this
device must ensure that all necessary steps have been taken to verify that the applications meet all performance
and safety requirements including any applicable laws, regulations, codes, and standards.

There are many applications of this product. The examples and illustrations in this document are included solely
for illustrative purposes. Because of the many variables and requirements associated with any particular
implementation, Diamond Technologies Inc. cannot assume responsibility for actual use based on these examples
and illustrations.

Diamond Technologies Inc., reserves the right to modify our products in line with our policy of continuous product
development. The information in this document is subject to change without notice and should not be considered
as a commitment by Diamond Technologies Inc.

Intellectual Property Rights

© 2014 Diamond Technologies Inc. * ALL RIGHTS RESERVED.* Protected to the fullest extent under
U.S. and international laws. Copying, or altering of this document is prohibited without express written consent
from Diamond Technologies Inc.

Diamond Technologies Inc. has intellectual property rights relating to technology embodied in the product
described in this document. These intellectual property rights may include patents and pending patent applications
in the US and other countries.

Diamond Technologies Inc. and the Diamond Technologies logo are trademarks of Diamond Technologies Inc. All
other trademarks are the property of their respective holders.

DT9000: Development Kit Page 2 of 17

| Revision History

Version Date Description
1.0 7/4/2015 Original Version
1.1 7/17/2015 Updated for Development Kit Version 1.0.2

Il Reference Documents

iii Table of Contents

... 2
T REVISION HISTOMY ... ettt bbb bbbt b bbb bbb b et et b et b et 3
11 RETEIENCE DIOCUMENES. iitiiieeiiet ettt sttt et et e s e ae s b e s besbeebe e s e en e e e eenbesbeebeeneenteneenbenbeanenreeneeneees 3
TH TADIE OF CONEENES ...ttt bbbt bt b e h et e b e s b e bt e b e et en b e neeebenbesbe et e e e eneees 3
1.0 OWVBIVIBW ...ttt ettt et b bt h e £t et e s o2 e bt bt e b€ e b £ e H e 2822 e e a b e A E e eb e A b e e b £ e b £ e me e s b e ee e b e nbeebenb e e bt ebeene et es 5
2.0 Master EXample Program OVEIVIEWcoiiiiiiieiiieiie ettt see st ste s se e seesbesbesbesbesseaneaseennennas 5
2.1 Installation and RUNNING DELAIIS.........c.ccciiiiieicic ettt b e besbe e e eneesnens 7
2.2 MaIN ClASSES OVEIVIEWevieeiietiitesietiste ettt sttt sttt tes et e e s e b s e s b e e es b b e st ket en e b et en et et en e be st eneann 7
3.0 MASTErDEVICE ClASSvvveieieite ettt ettt sttt sttt bbbt et b e b be s e e b et et et ebe s b et ebe s b et et st et e be b eneees 8
3.2 Property: INt SErAINUMDEToiicecce et r e e et e s besbesreeraeneeneeneens 8
3.3 Property: INt DEVICENUMDETcviieiiie ettt e e te et re e neena e e esaeseenresbesnenraeneeneeneens 8
3.4 Property: String BOArANEAME.c..ciiiiiieie ettt bbbt b et b bbbt 8
3.5 Property: INt BOAIANUIMIDETc.oiiiiiieiitise ettt b ekttt eb bbbttt bbb ens 8
3.5 Static Method: int getNUMDEIDEVICES() .. vovvivieeiiiiieiirieie e 8
3.6 Constructor: MasterDevice(int deVINUMDET) ..ottt bbb e e 9
3.7 Method: void setCifxDriverPath(String NEWPALN)...........c.ooiiiiiiiiie e 9
3.8 Method: int[] readHardwWar€OPLIONS() ... veeueeeerieie ettt sttt sttt eese b sbe b e b et b e e eneennns 9
3.9 Method: int[] getHardwar@OPLIONS()cceieiiieiieeiieiieiese sttt s reera e e e s ae b e besneeree e eneees 10
3.10 Method: bool loadFirmware(string filepathToLoad, string saveOldFirmwareFilepath, bool andRestart). 10
3.11 Method: bool loadFirmware(string filepathToLoad, bool andRestart)ccccvevevevenesie s 11
3.12 Method: ComChannel getComChannel(int channelNUMbEN)ccoeriiiiie i 11
3.13 Method: int NUMCOMCRANNEIS() «..vvevveeeiererire e et e st resreaneere e e eneees 11
3.14 Method: string getHardwareOptionName(int hardwareOptioNNUMbEN)ccoovvvevvvivriesie e 11
3.15 Method: string getFirmwareFIIENAME()ccooiiiiriiieiee bbb 12
3.16 Method: Firmwarelnfo getCurrentFirmwarelnfo()cooriiiiiiiiiicse e 12
3.17 Method: Filelnfo getCurrentFirmwareFile()o 12
3.18 Method: List<Filelnfo> getConfigurationFilES()cccveieriieiiiiiicie et e 12
3.19 Method: bool loadConfiguration(List<string> filepathsToLoad, bool andRestart)c.ccccvveeverenennnn 13
3.20 Methdod: bool loadConfiguration(List<string> filepathsToLoad, string filepathToSave, bool
a0 o) v SRS 13
I\, 1= 1 oo Bl oTo o] I (1) -) ISR 13
3.22 Method: List<Firmwarelnfo> getSupportedFirmware()ccoovererereriesesnseseereeeeseseese e s 14
3.23 Method: List<Firmwarelnfo> getAHFIrMWAre()cccviviieieiiciesise st 14
4.0 COMCRNANNEL ...ttt bbbt b bbb bbbt e bt b et s bt st eb et enn 14

DT9000: Development Kit Page 3 of 17

O 1 3 1 £ [o] TR 15

4.2 Method: MasterDeViCe GEIDEVICE() . ..uivevrirreieiiriiietirteet sttt 15
4.3 Method: string getChanneINAME().........ooeiiriiieeeiee ettt bbb bbbt ne e e 15
4.4 Method: int[] getInputData(int NUMBYLES, iNt OFFSEL)ooeiiiiiiiee e 15
4.5 Method: int[] getLastOutputData(int NUMBYeS, iNt OFFSEL).........cceeiiiiiiiiie e 16
4.6 int setOutputData(int[] data, INt OFFSEL)ccciiiiiiieee e e 16
5.0 FIMMWAIEINTO ClASS ...ttt ettt sttt sttt b et s b et sttt s bt et s b e e 17
5.1 Property: String DiSPIaYNAMEcc.ciiiiiiiiiciie ettt e te e e ra e et e s re b e beaneeree e enbees 17
5.2 Property: StriNG FHENAIMEvcieie ettt taese e e e e e e e saeseesresreaneere e e eneenes 17
5.3 Property: Int HardwWar€REQUITEIMENLccviiieeicierer sttt e e e e sre e re e enee s 17

DT9000: Development Kit Page 4 of 17

1.0 Overview

The DT9000 Development kit consists of two DLL files that can be used to easily communicate with the
Industrial Network Master driver from any .NET application. The first file, DT_IndustrialMaster.dll must
be added as a resource file to your .NET project. The second file, cifx_interface.dll just needs to be in

the same directory as the first DLL file.

The Development kit also includes an example program, which is a very simple example of what can be
done with the DT9000 master. All source code for the sample program is included.

2.0 Master Example Program Overview
The master sample interface consists of a single form. It allows the user to change the firmware, select a
communication channel to use, view input and set output.

Note: The DT9000 Master Sample application must be run as an administrator. Reading and switching
the firmware requires manipulation of the Windows device registry. If your application is not running
as an administrator, you will get exceptions when trying to perform these actions.

DT9000: Development Kit Page 5 of 17

DT9000 Sample Program ¥1.0.2 !E[E

Currenty Loaded Firware: EthernetlP Master DeviceMet kdaster
5 elect Firmware Load | |5E|E'3t Channel j Set |

Save Current Configuration | Load Configuration |

- -

Fead Input | Set Output |

Enter each byte az an integer between 0 and
285 with only a zingle comma between them.

Reset Selected Channel If an ireealid byte is encountersd, it will be
transmitted az O=00.

Size in Bytes

The Select Firmware combo-box can be used to select the firmware you wish to load into the master
device. Once you have firmware loaded, the Select Channel combo-box will populate with the available
communication channels (firmware and channel selection is explained in detail later in this document).

Note: Loading new firmware will clear the current configuration from the device. This is intentional, as
the configuration for one network will not work on any other. In your application you should consider
using the provided methods to save the currently loaded configuration file before switching the
firmware.

In this application, you will have to download the configuration using SYCON.NET each time you
change the firmware.

Once a channel has been selected, you can use the Read Input and Set Output functions to view and
change the data on the network.

DT9000: Development Kit Page 6 of 17

You can also use the Save Current Configuration and Load Configuration buttons to save or load the
configuration associated with the selected channel. Depending on the network, the configuration will be
either one or two .nxd files. When loading a configuration with multiple files, the user must select both
files from the file dialog window.

To set output data, enter each byte as an integer between 0 and 255 separated by commas. (eg. 0,5,99,
255). Any bytes that are not properly formatted will be sent as a 0 and the rest of the data will not be
affected.

The Reset Selected Channel button will reset the hardware associated with the currently selected
channel. This is useful when working with some networks because if your slave device is reset, the
master may mark it as Failed until the bus resets. This button will allow you to reset the network
without restarting the DT9000 or changing the firmware.

2.1 Installation and Running Details

In its current form, this application MUST be run as an Administrator. This is because of the registry
modifications required to change the device firmware. Failure to run the application as an administrator
could cause exceptions to be thrown indicating that the application cannot perform the expected
operations.

As previously mentioned, the application requires 2 DLL files to run. They both must exist in the same
directory, though only the DT_IndustrialMaster.dll needs to be added as a resource to your .NET
project. In addition to these files, the included directory, cifX Firmware must be in the same directory as
the application executable. This directory contains the firmware files to load on to the device.

2.2 Main Classes Overview

There are three main classes that you will use to control the DT9000 Master. They will be available to
you if you include the DT_IndustrialMaster.dll in your application. First is the MasterDevice class. Each
instance of this class represents a master hardware device in your DT9000. A static method can be used
to discover the number of devices in your DT9000 and you can then create instances of this class using
the device number. If you have one device, you will only have a device 0. A DT9000 with 2 devices will
be able to instantiate a device 0 and device 1. Using a device number higher than the number of devices
minus 1 will result in an exception. In a multiple-device DT9000, each device will have different
hardware options. It is possible to have an open communication channel from each device
simultaneously.

The MasterDevice class is mainly used to gather information and change the settings of the hardware.
This includes reading and loading firmware, loading configuration, getting the hardware serial, device
name, available network hardware and opening communication channels.

The ComChannel class is used to actually communicate over the network. Each MasterDevice can have
up to 8 communication channels which represent different areas of the dual-port memory on the
master device. The only channel covered by this document is channel 0, the communication channel. It
can be used to read input and output byte arrays and write to the output byte array. For information on

DT9000: Development Kit Page 7 of 17

other communication channels, see the document netX Dual-Port Memory Interface DPM 12 EN.pdf,
included on the DT9000 Quick Start CD.

Finally, there is the class Firmwarelnfo. This class is provided as a convenient way to get information
about firmware options. Each Firmwarelnfo object contains a display name (eg. Ethernet IP), the name
of the corresponding firmware file (eg. cifxeim.nxf) and the integer code for the required hardware to
use the firmware. Each MasterDevice object will provide you with a list of compatible Firmwarelnfo
objects, and a list of all Firmwarelnfo objects. It is important to note that these objects do not actually
contain the firmware in any way. They contain the base filename for the firmware- you will still have to
point your application to the directory the firmware is stored in.

3.0 MasterDevice class

Each instance of the master device class corresponds to a physical master device within the DT9000.

3.2 Property: Int SerialNumber

This is a read-only property containing the serial number of the device. This is populated when the
object is constructed and is used to determine the registry and filepath relating to this particular device.
Most of these operations are already implemented by the MasterDevice class.

3.3 Property: Int DeviceNumber

This is a read-only property containing the DeviceNumber (product number) of the device. It will be the
same for all hardware devices. It is used to determine the registry and filepath relating to this particular
device. Most of these operations are already implemented by the MasterDevice class.

3.4 Property: String BoardName

This is a read-only property containing the text name of the device. Each device will have a text name in
the form of cifx#. The number included in the name is not necessarily the same as the board number
and should not be used as such. The board name is used in some low level hardware operations to
address a particular device. Most of these operations are already implemented by the MasterDevice
class.

3.5 Property: Int BoardNumber

This is a read-only property containing the board number used to instantiate this MasterDevice object. It
is used by some low level hardware operations to address this particular device. Most of these
operations are already implemented by the MasterDevice class.

3.5 Static Method: int getNumberDevices()

This method returns the number of master devices included in the DT9000. With the current DT9000
hardware this will be either 1 or 2. Using the device number, you can create instances of the
MasterDevice class. Each master device has a board number from 0 through (totalDevices-1). This
number must be passed to the MasterDevice constructor to indicate which device to point to. For most
applications, you will want to create and maintain a master device object for each hardware device.

DT9000: Development Kit Page 8 of 17

3.6 Constructor: MasterDevice(int devNumber)

PARAMETERS
Int devNumber The board number of the device this instance will point to.
RETURN
N/A

The constructor will create an instance of the MasterDevice class corresponding to the hardware device
indicated by the devNumber passed to the method. The devNumbers are always sequential starting at O,
so you can use the number of devices obtained from the getNumberDevices() method to instantiate an
object for each of your devices.

The constructor will populate all of the public Property fields mentioned above (3.1-3.4) but it WILL NOT
populate the hardware options array (see section 3.8). Discovering the hardware options is a long
operation (1-4 seconds) and it disrupts bus communication. We have decided to separate it from the
other information gathering functions to allow the programmer to choose when this operation will be
most appropriate for their particular application.

It is also advised that the constructor be contained in a try-catch block. An exception will be thrown if
the constructor is unable to obtain a driver handle. Only one application may hold a driver handle at a
time and if the handle is not explicitly closed, no other applications will be able to access the driver until
the device is restarted.

This can occur if an application using the driver crashes before it is able to close the handle. We have
also observed that SYCON.NET will sometimes not properly release the driver handle even when it exits
gracefully.

If you are having problems with exceptions thrown in the constructor, the first thing to do is restart the
DT9000 to ensure that no other application is blocking your use of the hardware driver.

3.7 Method: void setCifxDriverPath(string newPath)

PARAMETERS
String newPath The filepath the MasterDevice object will use to find the cifX driver
RETURN
N/A

This method was included for compatibility with other systems. The MasterDevice object will look in the
default DT9000 install location for the hardware driver, unless a different install location is set using this
method.

3.8 Method: int[] readHardwareOptions()
PARAMETERS
N/A
RETURN

DT9000: Development Kit Page 9 of 17

‘ Int[4] HardwareOptions | An array of the 4 hardware options available on this device

This method discovers the four hardware options associated with the particular device and returns them
as an array of integers. The method getHardwareOptionName(int) can be used to get a human readable
string describing each of the discovered options.

The hardware options allow the user to determine which network interfaces are associated with which
hardware device. Devices will have 1-2 different network interfaces, though the returned array will
always be of length 4 (maximum number of interfaces). This array can be used to check against the
hardware requirement property of Firmwarelnfo objects to determine if the particular device will
support a firmware choice.

This method requires administrator permission to run. If your application is not running with
administrator permission, a DTCommException will be thrown.

The discovery process can take a few seconds to complete, so it is recommended that this method only
be called once. Once this method has been called, the result is saved and you can read it back using the
method getHardwareOptions().

3.9 Method: int[] getHardwareOptions()
PARAMETERS
N/A
RETURN
Int[4] HardwareOptions An array of the 4 hardware options available on this device

This method can be called to read the hardware options array of a MasterDevice object (see section 3.8).
If called before the hardware options have been read, the array will contain all 0’s.

3.10 Method: bool loadFirmware(string filepathToLoad, string
saveOldFirmwareFilepath, bool andRestart)

PARAMETERS

String filepathTolLoad Filepath of firmware to load

String Filepath to save currently loaded firmware
saveOldFirmwareFilepath

Bool andRestart Flag indicating weather device should restart afterwards
RETURN

Bool success Indicates success or failure of loading new firmware

This method will load a new firmware file to the device and attempt to save the currently loaded
firmware to the provided filepath. This method will overwrite the old file regardless of its success
moving the old file out of the device, so you should always maintain a directory containing all firmware
files you intend to use with your application.

DT9000: Development Kit Page 10 of 17

The andRestart flag will cause the device to automatically reset after the new firmware is loaded. The

new firmware will not be active until the device is restarted so if this is set to false, you will have to call

the restart() method on the device before it will be usable.

This method will return a Boolean indicating the success of the firmware download. It will return true if

the download is successful, even if the restart flag is set to false (firmware is not yet active).

3.11 Method: bool loadFirmware(string filepathToLoad, bool andRestart)

PARAMETERS

String filepathTolLoad

Filepath of firmware to load

Bool andRestart

Flag indicating weather device should restart afterwards

RETURN

Bool success

Indicates success or failure of loading new firmware

Same as section 3.10, but does not save the old firmware file.

3.12 Method: ComChannel getComChannel(int channelNumber)

PARAMETERS

Int channelNumber

Channel number to return

RETURN

ComcChannel channel

The ComChannel object at the instance specified by
channelNumber

Used to get a ComChannel object from the MasterDevice. Each device can contain up to 8 channels,

though only channel 0 is supported at this time. Channel 0 is the communication channel and can be

used to read and manipulate the input/output byte arrays. (see section 4.0 for more info).

3.13 Method: int numComChannels()

PARAMETERS

N/A

RETURN

Int numChannels

The number of available ComChannels associated with this device

Each device can have up to 8 ComChannels, used for different purposes depending on the current

network firmware. Every device with attached network adapters will have channel 0, allowing

manipulation of the input/output byte arrays. Only channel 0 is supported at this time.

3.14 Method: string getHardwareOptionName(int hardwareOptionNumber)

PARAMETERS

Int hardwareOptionNumber

The hardware option code to evaluate

RETURN

String
readableHardwareOption

A human-readable description of the hardware option indicated

DT9000: Development Kit Page 11 of 17

This method will translate a hardware option code returned in the HardwareOptionsArray into a human-

readable description of the hardware option (eg. DeviceNet, Ethernet, Profibus).

3.15 Method: string getFirmwareFileName()

PARAMETERS

N/A

RETURN

String firmwareFilename

The base filename of the currently loaded firmware

This method can be used to get the base filename of the currently loaded firmware. This will return an

empty string if there is no currently loaded firmware.

3.16 Method: Firmwarelnfo getCurrentFirmwarelnfo()

PARAMETERS

N/A

RETURN

Firmwarelnfo firmware

A Firmware info object describing the currently loaded firmware

This method can be used to get a Firmwarelnfo object describing the currently loaded firmware (see

section 5.0). This object will be null if there is no currently loaded firmware.

3.17 Method: Filelnfo getCurrentFirmwareFile()

PARAMETERS

N/A

RETURN

FileInfo firmwareFile

A FileInfo object pointing to the currently loaded firmware file

This method will return a FileInfo object pointing to the currently loaded firmware file. This will be null if

no firmware is loaded. The FileInfo object can be used to easily manipulate (delete, copy etc.) the

current firmware.

3.18 Method: List<FileInfo> getConfigurationFiles()

PARAMETERS

N/A

RETURN

List<FileInfo>
configurationFiles

A list of FileInfo objects representing all currently loaded firmware
files

This method can be used to save the configuration currently loaded in the device. Because the

configuration for some of the networks is stored across multiple files, a list of Filelnfo objects will be

DT9000: Development Kit Page 12 of 17

returned. These can then be used to copy, move or delete the files associated with the current
configuration.

3.19 Method: bool loadConfiguration(List<string> filepathsToLoad, bool

andRestart)
PARAMETERS
List<string> filepathsTolLoad List of the full file paths of the configuration files to load
Bool andRestart Flag indicating weather device should restart afterwards
RETURN
Bool success Indicates the success of the operation

This method is used to load configuration files into a particular device. Some networks require more
than one file for their configuration. The first parameter is a list of the full file paths of each
configuration file to load. The second parameter indicates weather the device should be automatically
restarted when the operation is complete. A restart will be required before the device can function with
the new configuration.

3.20 Method: bool loadConfiguration(List<string> filepathsToLoad, string
filepathToSave, bool andRestart)

PARAMETERS

List<string> filepathsTolLoad List of the full file paths of the configuration files to load

String filepathToSave Path of directory to save old configuration to before overwriting
Bool andRestart Flag indicating weather device should restart afterwards
RETURN

Bool success Indicates the success of the operation

Same as the previous method (section 3.19) but will attempt to save any current configuration files to
the provided directory path before overwriting them. If files with conflicting names already exist at the
specified “filepathToSave” the operation will not continue and return false. If there is some other error
preventing the files from being successfully saved, an Exception will be thrown indicating the issue, and
the operation will not continue. If the files are successfully saved and the new configuration successfully
loaded, the operation will return true.

3.21 Method: bool restart()
PARAMETERS
N/A
RETURN
Bool Success Indicates the success of the restart operation

This method is used to restart the device. A restart is required after loading a new firmware or
configuration. Some networks will not recognize slaves that have previously dropped from the network

DT9000: Development Kit Page 13 of 17

until a restart occurs. Restarting the device will interrupt bus communication but will not affect the
loaded firmware or configuration.

3.22 Method: List<Firmwarelnfo> getSupportedFirmware()
PARAMETERS
N/A
RETURN
List<Firmwarelnfo> supportedFirmware | A list of supported firmware as Firmwarelnfo objects

This method will return a list of supported firmware in the form of Firmwarelnfo objects based on the
hardware options of the device. If the readHardwareOptions() method has not yet been called, this
method will return a list of 4 Firmwarelnfo objects indicating NONE as the display name.

3.23 Method: List<Firmwarelnfo> getAllFirmware()
PARAMETERS
N/A
RETURN
List<Firmwarelnfo> allPossibleFirmware | A list of all possible firmware as Firmwarelnfo objects

This method will return a list of all possible firmware options in the form of Firmwarelnfo objects. This
method will always return the same list, regardless of a specific objects hardware options.

4.0 ComChannel

Each MasterDevice can contain up to 8 ComChannels. Each ComChannel represents a segment of the
Dual-Port memory and is used for a specific purpose. Channel 0 is the communication channel and is
used to read and write bytes to and from the network. Channel 0 is the only supported channel at this
time. For more information on the other channels, see the document netX Dual-Port Memory Interface
DPM 12 EN.pdf included on your DT9000 Master Quick Start CD.

A ComChannel is acquired through the getComChannel(int channelNumber) method of a MasterDevice
object. All devices with connected network hardware will have a channel 0. If channel 0 is null, this could
indicate that the currently loaded configuration is not correct, or that another application is blocking use
of the hardware driver.

It is important to note that all of the DT9000 Master Hardware is auto-starting. This means that the
network communication will automatically start when an appropriate firmware and configuration is
loaded. This allows network communication to begin without intervention after a master device or
DT9000 restart. An explicit restart command must be sent after you change the firmware or
configuration, but the device will start communication automatically when it comes back online
(assuming that there are no firmware or configuration errors). If you wish to stop the network
communication, remove the firmware or configuration files using methods in the MasterDevice object.

DT9000: Development Kit Page 14 of 17

4.1 Constructor

The constructor should not be called outside the MasterDevice class. This will likely result in a non-
functioning ComChannel. Instead, obtain an instance of the ComChannel class using the
getComChannel(int channelNumber) method of a MasterDevice. If the resulting channel is null, you may
have a problem in your master configuration (see DT9000 Quick Start Guide).

4.2 Method: MasterDevice getDevice()
PARAMETERS
N/A
RETURN
MasterDevice associatedDevice A MasterDevice object indicating the associated hardware

This method can be used to get the MasterDevice object that owns this ComChannel. This is useful for
gathering information about the channel, such as the associated network firmware.

4.3 Method: string getChannelName()
PARAMETERS
N/A
RETURN
String channelName Returns the DisplayName of the associated firmware

This method returns the DisplayName property of the Firmware that is currently loaded into the master
device that owns the ComChannel. This allows you to easily determine the network protocol being
implemented on this channel.

4.4 Method: int[] getInputData(int numBytes, int offset)

PARAMETERS

Int numBytes Number of bytes to read

Int offset Offset to start at in the Input Data Block
RETURN

Int[] inputByteData The requested portion of the Input Data Block

This method is used to read from the Input Data Block of the dual-port memory on the master
hardware. The input data block is 5760 bytes long, and any bytes above the final index of the configured
input array for your current network will contain garbage data.

Though the returned array is of type int[] each element will actually be a byte value (0 — 255).

The offset indicates where to begin reading (0 — 5760) and the numBytes is how many bytes to read
beyond the start index.

DT9000: Development Kit Page 15 of 17

A null pointer or exception thrown by this method indicates an incorrect configuration loaded into the
master.

4.5 Method: int[] getLastOutputData(int numBytes, int offset)

PARAMETERS

Int numBytes Number of bytes to read

Int offset Offset to start at in the Output Data Block
RETURN

Int[] outputByteData The requested portion of the Output Data Block

This method is used to read from the Output Data Block of the dual-port memory on the master
hardware. The output data block is 5760 bytes long, and any bytes above the final index of the
configured output array for your current network will contain garbage data.

Though the returned array is of type int[] each element will actually be a byte value (0 — 255).

The offset indicates where to begin reading (0 — 5760) and the numBytes is how many bytes to read
beyond the start index.

A null pointer or exception thrown by this method indicates an incorrect configuration loaded into the
master.

This method should be called at least once to ensure that you have the correct starting configuration of
the output array, or cyclically if there are other processes changing the output array to ensure that the
output values in your application are up to date.

4.6 int setOutputData(int[] data, int offset)

PARAMETERS

Int[] data Byte data to write

Int offset Offset to start at in the Output Data Block
RETURN

Int returnStatus Indicates the success of the operation

This method is used to set values in the output data block. The output data block is 5760 bytes long, but
any bytes written above the last configured index in your master configuration will not be sent over the
network.

Though the array is of type int[] each element must actually be a byte value (0 — 255).

The offset indicates where to begin writing (0 — 5760) and the numBytes is how many bytes to write
beyond the start index.

A non-zero return status indicates an error has occurred. This likely means that your master
configuration is incorrect or another process is blocking use of the hardware driver.

DT9000: Development Kit Page 16 of 17

5.0 Firmwarelnfo Class

This class was included as a convenient way to gather information about a particular network firmware.
You can get a complete list of firmware by calling getAlIFirmware() on a MasterDevice object.

It is important to note that a Firmwarelnfo class does not actually contain the firmware file, it only
provides the base filename (eg. Cifxeim.nxf) for the file it describes. You will have to maintain a directory
somewhere containing all of the firmware files required for your application.

5.1 Property: String DisplayName
This is a read-only property that indicates the human-readable name of a firmware object. You can use
this property to display firmware choices to a user.

5.2 Property: String FileName
This is a read-only property that indicates the base filename of a firmware file. This can be used to pick a
particular firmware file out from a directory containing multiple files.

5.3 Property: Int HardwareRequirement
This integer corresponds to the hardwareOptions array of a MasterDevice object. This can be used to
match compatible firmware to a MasterDevice object.

DT9000: Development Kit Page 17 of 17

