

DT7000
 Communication I/O Gateway

Programming Guide
Version 1.3

Date 8/13/13 DT7000 Gateway Programming Guide 1.3 Page 2 of 15

6 Clock Tower Place
Suite 100
Maynard, MA 01754
USA

Tel: (866) 837-1931
Tel: (978) 461-1140
FAX: (978) 461-1146

http://www.diamondt.com/

Liability

Diamond Technologies Inc. shall not be liable for technical or editorial errors or omissions contained herein, nor for
incidental or consequential damages resulting from the use of this material. Those responsible for the use of this device
must ensure that all necessary steps have been taken to verify that the applications meet all performance and safety
requirements including any applicable laws, regulations, codes, and standards.

There are many applications of this product. The examples and illustrations in this document are included solely for
illustrative purposes. Because of the many variables and requirements associated with any particular implementation,
Diamond Technologies Inc. cannot assume responsibility for actual use based on these examples and illustrations.

Diamond Technologies Inc., reserves the right to modify our products in line with our policy of continuous product
development. The information in this document is subject to change without notice and should not be considered as a
commitment by Diamond Technologies Inc.

Intellectual Property Rights

© 2011 Diamond Technologies Inc. * ALL RIGHTS RESERVED.* Protected to the fullest extent under
U.S. and international laws. Copying, or altering of this document is prohibited without express written consent from
Diamond Technologies Inc.

Diamond Technologies Inc. has intellectual property rights relating to technology embodied in the product described
in this document. These intellectual property rights may include patents and pending patent applications in the US and
other countries.

Diamond Technologies Inc. and the Diamond Technologies logo are trademarks of Diamond Technologies Inc. All other
trademarks are the property of their respective holders.

Date 8/13/13 DT7000 Gateway Programming Guide 1.3 Page 3 of 15

I Revision History
Version Date Description

0.1 09/14/10 Preliminary Version
0.2 08/17/11 Added Detail Content
1.0 08/19/11 Added Diagnostics Interface sections
1.1 11/15/11 Added detail to samples
1.2 01/23/12 Updated for updates in DT7000 main firmware
1.3 07/01/13 Updated Cover pages

ii Reference Documents

Table of Contents

I Revision History .. 3
ii Reference Documents ... 3
Table of Contents ... 3
1.0 Introduction .. 4
2.0 DT7000 Programming ... 4
2.1 User Program Architecture .. 4
2.2 Development Tools .. 6
2.2 Program Download .. 6
3.0 Sample Applications .. 9
3.1 I/O Sample ... 10
3.2 Barcode Sample ... 12
Appendix A: DT7000 Memory Map .. 14

Date 8/13/13 DT7000 Gateway Programming Guide 1.3 Page 4 of 15

1.0 Introduction

This document describes application programming for Diamond Technologies DT7000 Communications I/O
Gateway. The DT7000 module provides a gateway between industrial networks, and physical I/O devices,
including serial digital and analog I/O. Using this programmability an application program can be installed in the
gateway to perform intermediate processing of serial data, I/O data and fieldbus data. This allows the gateway to
act as an embedded logic controller either standalone or in conjunction with the fieldbus network.

2.0 DT7000 Programming

The DT7000 module defines data in an input array and an output array. Physical inputs such as digital and analog
inputs, and received serial data are mapped into the input array. Physical outputs such as digital and analog
outputs and serial data to be transmitted are mapped from the output array. The standard DT7000 firmware
connects the input and output arrays to the installed fieldbus allowing the fieldbus network to read the physical
inputs and write the physical outputs.

When an application program is installed the DT7000 firmware separates the fieldbus from the input and output
arrays, and installs the application in between. The application is able to read the physical inputs connected to the
gateway and read the fieldbus output data sent by the master over the network. The application is also able to
write values to the physical outputs and write values to the fieldbus input data to be read by the master over the
network. The application can further perform logic or process the data as required. Figure 1 shows the
architecture of the DT7000 firmware with a user application installed.

Figure 1 User Application Block diagram

2.1 User Program Architecture

DT7000 Firmware

Input Array:

 Digital Inputs
 Analog Inputs
 System Data
 Serial Receive Data
 Host Values

Output Array:
 Digital Outputs
 Analog Outputs
 Serial Send Data
 Host Values

Fieldbus Input:

Values Set by Application

Fieldbus Output:

Values read by Application

Gateway Logic:

 C Application
 Process Data
 Control Logic

Scan Loop

Date 8/13/13 DT7000 Gateway Programming Guide 1.3 Page 5 of 15

The user application program for the DT7000 is created in C using standard development tools. The user
application program is created to run as an integral part of the standard DT7000 firmware. All the standard
DT7000 functionality, including interfacing to I/O, serial channels and the industrial network, along with other
functionality such as timing, configuration management, and resource allocation is handled by the DT7000
firmware. The user program is thus simplified to the logic and data manipulation required by the application. The
user program consists of the following components.

Code:

GatewayLogic – Routine. The user program consists of a single routine which is called each time
through the scan loop. This routine is installed at a pre-defined location in the DT7000 program memory.

Data:

DT_InData – A data structure is defined which matches the physical input devices configured in the
DT7000. The user code can then access these input devices through this structure.

DT_OutData – A data structure is defined which matches the physical output devices configured in the
DT7000. The user code can write to these output devices through this structure.

FB_InData – A data structure is defined which matches the desired fieldbus input data to be read by the
master. The user code can then write the data to the fieldbus master through this structure.

FB_OutData – A data structure is defined which matches the desired fieldbus output data to be written
by the master. The user code can then access the data set by the fieldbus master through this structure.

DTSysDat – A data structure is defined by the DT7000 which includes system information and control
values. This structure provides an interface between the user program and the DT7000 for these system
functions.

Since the user application consists of a single routine called as part of the scan loop, the code must be developed
accordingly. The GatewayLogic routine must execute and return in an efficient manner. Execution time of this
routine will directly add to the scan time. The routine should never wait for events in line. A state machine can be
created to wait for events. Timing can be accomplished within the state machine using the 0.1 msec timer
available in the DT_SysDat structure, or the msec timer or sec timer which can be configured into the
DT_InData structure. Examples of using state machines to wait for events with timing are in the sample
applications.

A header file DT7000Gateway.h is included in the user program. This provides location information for the code
and data structures listed above. The code and data structures must be located at the proper locations to integrate
with the DT7000 firmware. Refer to the sample applications to locate the code and data structures.

The header file also provides a definition of the DTSysDat structure. Refer to this header file for a description of
the components available through this structure. The sample applications demonstrate the use of some of these
components.

The diagnostic port can be used to display information to debug the application. It can also be used as a user
interface if required by the user application. The sample applications demonstrate the use of the diagnostic
interface.

The user application can store configuration information to non-volatile flash memory if required. The sample
applications have examples of storing configuration information to flash.

Date 8/13/13 DT7000 Gateway Programming Guide 1.3 Page 6 of 15

2.2 Development Tools
The following development tools are recommended for creating the user program.

 MPLAB – IDE Microchip http://www.microchip.com/

PCD - C Compiler, Command Line CCS http://www.ccsinfo.com/
PICKit 3 – Programmer/Debugger (Optional) Microchip http://www.microchip.com/

Note the PICKit 3 Programmer/Debugger is optional. Code created in MPLAB and compiled with the PCD
compiler can be loaded into the DT7000 directly through the diagnostic port without the need for a programmer.
The PICKit 3 is used for source level debugging from within MPLAB. Most user programs can be simply
debugged with diagnostic outputs sent to the diagnostic port during execution eliminating the need for a debugger.
The PICKit3 can also be use to load the DT7000 main firmware. It is possible to write application code which
corrupts the main firmware, or configuration. In this case the main firmware must be reloaded with a programmer
to recover the module.

2.2 Program Download

Once created the user program can be downloaded to the DT7000 through the Diagnostic Interface. A diagnostic
cable (CAB-DT7-DIAG) is provided as part of the DT7000 starter kit or can be purchased separately from
Diamond Technologies. The cable allows for a connection to the DT7000 diagnostic interface using a terminal
program such as Windows HyperTerminal or the open source software Tera Term (www.logmett.com).

The diagnostic interface by default is accessed through Port D of the DT7000. The default communications
parameters in the DT7000 are as follows:

Default Communication
Parameters (Port D)

Baud 115200
Data Bits 8
Parity None
Stop Bits 1

The diagnostic interface allows for various configuration and diagnostic functions including downloading user
application code. For more information regarding the diagnostic interface refer to the DT7000 Users Guide

To download the user application program through the diagnostic interface using Tera Term perform the
following steps.

1. Connect the diagnostic cable to port D of the DT7000 and to an available port on your PC.

2. Start Tera Term and set the appropriate communications settings.

Date 8/13/13 DT7000 Gateway Programming Guide 1.3 Page 7 of 15

3. Press the ESC key to display the main menu.

4. Press “G” to select “Load Gateway Logic Code”

Date 8/13/13 DT7000 Gateway Programming Guide 1.3 Page 8 of 15

If a user application is currently installed the version will be displayed. ESC can be pressed to abort the
load.

5. In Tera Term select the File > Send File option.

6. Browse to the .hex file in your project folder and click “Open”.

Date 8/13/13 DT7000 Gateway Programming Guide 1.3 Page 9 of 15

 The DT7000 will display the address of application code as it is being downloaded to the DT7000.

7. Once completed the diagnostic interface will indicated a successful download, and the application will
start running.

 If you have diagnostic output in the program it will be displayed.

3.0 Sample Applications

Date 8/13/13 DT7000 Gateway Programming Guide 1.3 Page 10 of 15

Two sample user programs are provided. These programs demonstrate most of the functionality available to a
DT7000 user application, and can be used as a starting point for program development. These programs are
distributed as MPLAB projects. The source code for the program can be viewed, modified, and compiled using
MPLAB and the CCS compiler, and loaded into the DT7000 through the diagnostic port.

3.1 I/O Sample

The first sample program demonstrates the use of the digital and analog I/O along with the fieldbus and some
simple processing. In this sample an analog input is read. The 10 bit value is converted to a floating point value
indicating actual voltage (0-10 Volts), and this floating point value is made available on the fieldbus. In addition a
limit value can be set via the fieldbus. If the read voltage is greater then the limit value, output 0 is set, other wise
output 0 is cleared. In addition the digital and analog I/O is made accessible from the fieldbus.

This application first demonstrates putting DT7000 I/O data on the fieldbus.

A file DTConfig.C is included which defines the DT7000 configuration for this application. In this file, the
DT_InData, and DT_OutData structures are defined to represent the physical devices utilized on the DT7000 in
this application. The user application can read the various inputs into the DT7000 through the DT_InData values.
For instance DT_InData.AnalogIn[2] will contain the current value of analog input 2. The user application can
write the physical outputs by assigning values to the DT_OutData values. For instance the assignment
DT_OutData.DigOuts = 0x05 will turn on digital outputs 0 and 3.

struct
{
 BYTE DigIns; // Low byte of word 0 is digital INS
 BYTE Reserved; // High byte of word 0 is not used
 WORD AnalogIn[8]; // All 8 analog inputs enabled. First is used.
 WORD SecTimer; // Second Timer
 BYTE FirmMin; // Minor firmware version
 BYTE FirmMaj; // Major firmware version
} DT_InData;

struct
{
 BYTE DigOuts; // Low byte of word 0 is digital OUTS
 BYTE Reserved; // High byte of word 0 is not used
 WORD AnalogOut[4]; // Four words for analog outputs
} DT_OutData;

Next the FB_InData and FB_OutData structures are defined to represent the data we want on the fieldbus. These
structures are defined in the order and with the data types desired for the fieldbus representation of the data. The
user application will provide data to the host through the FB_InData values and will get data from the host
through the FB_OutData values.

struct
{
 BYTE DigIns; // Low byte of word 0 is digital INS
 BYTE FBDigOuts; // High byte of word 0 ‐ Install copy of digital outs for FB to read back
 WORD SecTimer; // Second Timer
 BYTE FirmMin; // Minor firmware version
 BYTE FirmMaj; // Major firmware version
 WORD AnalogIn;

Date 8/13/13 DT7000 Gateway Programming Guide 1.3 Page 11 of 15

 float Voltage; // Floating point voltage read on analog in 1
} FB_InData;

struct
{
 BYTE DigOuts; // Low byte of word 0 is digital OUTs (bit 0 set by logic, not set by fieldbus)
 BYTE Reserved; // High byte of word 0 is not used
 WORD AnalogOut;
 float VoltageLimit;
} FB_OutData;

The structures must be located to specific memory locations. This allows both the DT7000 main firmware and the
user application to access these structures.

#locate DT_InData = DTPDINSTART
#locate DT_OutData = DTPDOUTSTART
#locate FB_InData = FBPDINSTART
#locate FB_OutData = FBPDOUTSTART

The structures also must match the set configuration of the DT7000 in terms of the enabled I/O devices, and sizes.
The configuration is set with the GatewayConfig routine. This routine performs the following steps.

1. Checks the CONFIG bit ((FlConfig.Debug_Log & 0x80) == 0) to determine if the board needs to be
configured for this application.

2. Sets the CONFIG bit, so the board is now marked as configured for next power up.
3. Sets the data size of the arrays to match the above defined structures.
4. Enables the desired physical input and output devices by setting StdInEnbMask, and StdOutEnbMask.
5. Sets the Port A and Port C functions to be available (by default they are MODBUS and Generic Serial).
6. Sets the DTSysDat.FlUpdate value which causes this configuration to be saved to flash,
7. Prints a message on the diagnostic port indicating the board has been configured.

Based on the requirements of the application additional configuration can be done in this routine.

The main GatewayLogic routine first checks the DTSysDat.FirstPass variable. This variable will be TRUE the
first time the GatewayLogic routine is called. When this is TRUE the GatewayConfig routine is called and other
global variables are initialized.

Note that variables must be explicitly initialized in the code when the FirstPass variable is TRUE as opposed to
assigning an initial value as part of the declaration. A declaration with an initial value

BYTE SetOut0 = 0; //This will not work!!!
will cause the compiler to create initialization code prior to the call to main. When creating user application code
this initialization code will not be loaded or executed, since only the GatewayLogic routine is loaded.

The GatewayLogic routine next copies some of the physical inputs to the fieldbus and likewise copies fieldbus
values to the physical outputs. Since the GatewayLogic routine is executed on every scan loop, the assignment

FB_InData.AnalogIn = DT_InData.AnalogIn[0];
has the effect of providing a continuously updating analog value on the fieldbus inputs. Looking at the input data
with a fieldbus master, this value will always show the current analog value. Likewise the assignment

 DT_OutData.DigOuts = (FB_OutData.DigOuts&0xFE) + SetOut0;
has the effect of tying the physical outputs to a fieldbus output value on the master. From the master, any time it
changes this value the digital outputs will change accordingly. The exception is bit 0, which in our application

Date 8/13/13 DT7000 Gateway Programming Guide 1.3 Page 12 of 15

will be set when analog input 0 exceeds a limit value. The logic in the assignment excludes bit 0 in the fieldbus
output and adds the SetOut0 variable in its place. The SetOut0 variable will be set when the limit is exceeded.

if (FB_InData.Voltage >= FB_OutData.VoltageLimit) SetOut0 = 1;
else SetOut0 = 0;

The GatewayLogic routine demonstrates the creation of a processed value to be put on the fieldbus.

RdAnalogIn = DT_InData.AnalogIn[0]; // Freeze a value of analog in to use and display below
FB_InData.Voltage = (RdAnalogIn * 10.0)/1024; // 10 Volt full scale

Since FB_InData.Voltage is defined as a float, and since the floating point constant 10.0 is used, this assignment
converts the 10 bit analog input to a 32 bit floating point value corresponding to the actual voltage from 0 to 10
volts.

Finally the sample demonstrates using the diagnostic port to display debug and diagnostic data. At the bottom of
the GatewayLogic routine, it looks for a ‘9’ character to be pressed on the diagnostic port. If this is seen it
displays the last measured voltage as a raw 10 bit value, as the 32 bit hex representation of the floating point value
and as the converted floating point value corresponding to voltage. It also displays the voltage limit value as the
32 bit hex representation, and as the floating point value. From the master, depending on how you are able to
represent the value, you may only see the 32 bit hex representation of the value, or you may be able to see the
actual floating point value.

Note there is a limitation in user applications which does not allow displaying floating point values with the %f
format code. Therefore the floating point values must be converted to integers before displaying as shown.

3.2 Barcode Sample

The second sample program demonstrates the use of the serial I/O along with some digital I/O in a simple control
application. In this sample a barcode reader is connected to port B. The barcode reader reads UPC Barcodes and
sends the codes in a specific format over the serial channel. The sample program receives the serial string and
extracts the UPC code. It compares the code to 3 possible match codes, and sets the appropriate output (0, 1, or 2)
if the code matches one of the stored match codes. It further keeps a count of the total codes read, and the number
matching each match code. The counts, and the last read code are made available on the fieldbus. Additionally the
match codes can be taught via a command over the fieldbus, or via a command through the diagnostic port.
Additional diagnostics are available through the diagnostic port.

The application is meant to be used with a serial barcode reader. However if a barcode reader is not available, a
simple PC application is provided which can simulate the barcode reader. This application
(BarcodeSimulator.exe) allows you to select from a number of UPC codes, and will send these codes out the PC
serial port to the DT7000 in the same format as a barcode reader.

This application also includes a DTConfig.C file to configure the DT7000. In this application Port B is configured
to use the generic serial driver which allows the user application to access it through the DT_InData and
DT_OutData structures. The DT_InData and DT_OutData structures are defined to include the Port B data.

struct
{
 WORD SecTimer; // Second Timer
 BYTE FirmMin; // Minor firmware version
 BYTE FirmMaj; // Major firmware version
 // Port B Generic Serial

Date 8/13/13 DT7000 Gateway Programming Guide 1.3 Page 13 of 15

 serStat PortBStat; // Status byte
 BYTE PortBRxLen; // Receive length
 BYTE PortBRxBuff[20]; // Rcv Data buffer
} DT_InData;

struct
{
 BYTE DigOuts; // Low byte of word 0 is digital OUTS
 BYTE Reserved; // High byte of word 0 is not used
 // Port B Generic Serial
 serCont PortBCont; // Control byte
 BYTE PortBTxLen; // Transmit length
 BYTE PortBTxBuff[20]; // Data buffer
} DT_OutData;

The routine looks for data to be received on the serial port. Since the serial data is buffered by the DT7000 it waits
until an entire bar code string (STX, 12 character UPC code, CR, LF), is in the buffer before processing.

if (DT_InData.PortBStat.RxDat != DT_OutData.PortBCont.RxAck) // Serial Data available
{
 if ((DT_InData.PortBRxLen) >= 15) //// Data is STX UPC CR,LF. If not whole string, ignore
 {

Once the serial data is processed, the RxAck bit is set to be the same as the RxDat bit. This indicates to the serial
driver that this data has been processed and more data can be put in the serial buffer.

DT_OutData.PortBCont.RxAck = DT_InData.PortBStat.RxDat; // Toggle Toggle bit indicating data read

In run mode the routine simply compares the data in the Port B serial buffer to the stored match codes. If it
matches one of the codes, the corresponding output is set and the counter incremented. Regardless the total count
is incremented, and the code is put into the fieldbus data. The code is also displayed on the diagnostic port.

The application demonstrates storing configuration data in flash. The three match codes can be taught and stored
into flash, so they will be remembered after a power cycle. To do this a structure containing the data to be stored
in flash is defined, and located to the beginning of the application data area.

// The following structure will be written to flash to store config data.
struct
{
 BYTE StrUPCCode1[12]; // UPC Code to verify for out 1
 BYTE StrUPCCode2[12]; // UPC Code to verify for out 2
 BYTE StrUPCCode3[12]; // UPC Code to verify for out 3
}FL_CfgDat;

// This must be located at the start of user ram.
#locate FL_CfgDat = APRAMSTART

When new match codes are taught the values in this structure are updated with the new codes. Then to store the
structure to flash the DTSysDat.WrFlCfgSze variable is updated with the size of the data to be written to flash.

 DTSysDat.WrFlCfgSze = sizeof(FL_CfgDat);

This triggers the DT7000 main firmware to store this structure to flash. On startup (on FirstPass) the application
initializes the structure with the values stored in flash. Setting the DTSysDat,RdFlCfgSze variable with the size of
the data to read, triggers the DT7000 main firmware to update the structure with the stored values from flash.

Date 8/13/13 DT7000 Gateway Programming Guide 1.3 Page 14 of 15

DTSysDat.RdFlCfgSze = sizeof(FL_CfgDat); // Read match codes from flash

The user code configuration area is limited to 756 bytes. The size of the Fl_CfgDat structure must be kept less the
756 bytes.

Flash memory has a limited endurance. The flash memory in the DT7000 is guaranteed for a minimum of 10000
write cycles. Care should be taken to write the flash only as needed to update configuration data. Writing the flash
continuously during normal operation will exceed the life expectancy very quickly and render the module
unusable.

Appendix A: DT7000 Memory Map

The DT7000 memory map shows the entire memory utilization of the DT7000 and is provided for reference. The
DT7000Gateway.h file defines all the locations and sizes for user applications. Using the samples as a template
will create user applications compatible with the DT7000 firmware.

Program Memory
00000

.
001FF

Interrupt Vectors

00200
.

1E3FF

Main DT7000 Code

61696 Instructions

1E400

.
1E7FF

DT7000 Configuration

768 Bytes

1E800
.

1FFFF

BootLoader

3072 Instructions

20000
.

2A3FF

User Application Code

20992 Instructions

2A400
.

2A7FF

User Configuration

+ User ID

768 Bytes

2A800
.

2ABFF

Reserved

+PIC Configuration Words

Data Memory
0000

.
07FF

Special Function Registers

0800
.

08FF

Reserved for ICD

0900
.

Main DT7000 Data

Date 8/13/13 DT7000 Gateway Programming Guide 1.3 Page 15 of 15

2CFF
2D00

.
2FFF

Configuration Structure

3000
.

3AFF

Application data Structure

3B00
.

3Bff

DT_SysDat Structure

3C00
.

3CFF

FB_InData

3D00
.

3DFF

FB_OutData

3E00
.

3EFF

DT_InData

3F00
.

3FFF

DT_OutData

4000
.

5FFF

User Code Data

6000
.

7FFF

Reserved

8000
.

FFFF

EDS Window

Reserved

